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NON-EQUILIBRIUM BEHAVIOR 
OF SOME BRAIN ENZYME 
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The previous article in this review dealing with the regulatory properties of 
brain tyrosine (TOH) and tryptophan hydroxylase (TPOH) systems ( 1) empha­
sized (a) multidimensionality: almost all the components present under phys­
iological and assay conditions, ranging from electromagnetic fields through 
hydrophobic ligands to reducing equivalents, influence in one way or another 
the rate functions representing catalytic activities; (b) nonlinearity: critical 
zones of ligand concentration, curvilinear, even intermittent amount-effect 
functions, and inconsistencies among results depending on small differences in 

parameter values are consonant with the prominent role of cooperative interac­
tions among the many stated and unstated dimensions (coordinates) regulating 
catalytic systems; (c) conformational instability: in the protein macromolecular 
components of TOH and TPOH, conformational instabilities are evidenced by 

20 years of failure to purify the enzyme proteins in amounts useful for systemat­
ic extensive kinetic characterization, by their extreme friability under condi­
tions of storage, by their multiplicity of reported molecular weights and kinetic 
constants, and by their markedly increased ease of denaturation and precipita­
tion after the removal of components from their normal milieu by dialysis and 
enrichment procedures. That article expressed hope that a multivariate 
approach to studies of TOH and TPOH regulation could be developed to allow 
data reduction through pattern analysis in place of one- or two-variable kinetic 
experiments and quantification by Michaelis or Hill constants ( 1). 

This review updates the 1978 one with respect to research on the regulatory 
properties of TOH and TPOH as reported in the literature through early 1983 
with the exception of the cyclic nucleotide-protein phosphorylation schemata 
(recently involving calmodulin), the current status of which is reviewed else-

237 

0362-1642/84/4 15-0237$02.00 

A
nn

u.
 R

ev
. P

ha
rm

ac
ol

. T
ox

ic
ol

. 1
98

4.
24

:2
37

-2
74

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 C
en

tr
al

 C
ol

le
ge

 o
n 

12
/1

2/
11

. F
or

 p
er

so
na

l u
se

 o
nl

y.



238 MANDELL 

where (2-8). The emphasis here will be on a quantitative approach to qualita­
tive patterns in behavior of complex nonlinear systems like these, ones with 
which the molecular psychopharmacologist must continually deal. The princi­
ples derived will be extended to nonlinear phenomena seen in the currently 
popular ligand-binding systems with a few examples. The relevance of a new 
approach to cross-disciplinary pharmacological studies of brain function will 
also be demonstrated . A conjecture concerning a new structure-function 
approach to brain polypeptides emphasizing solvent-mediated dynamic macro­
molecular stability will serve to integrate these concepts . 

The mathematical formalisms of this approach are properly derived from 
modem approaches to stochastic differential equations, including phase transi­
tion theory (8a- 13) as enriched by current advances in nonlinear dynamics 
(14-20) . This difficult and esoteric theoretical route is not practically useful to 
those of us working in laboratories of biochemical pharmacology. The empha­
sis therefore will be on geometric intuition (the behavior of functions in the 
phase plane), physical mechanistic images, quantitative indices derivable from 
ones familiar to those who have used elementary statistics, and a metaphorical­
ly representative equation that, despite the complexity of its behavior, is both 
easily understood and numerically solvable on a hand calculator. Elementary 
representations of solvent entropy, the hydrophobic effect, and macromolecu­
lar dynamics from current research in the physics of globular proteins in 
solution will be used to explain the solvent-mediated allosteric principle treated 
here as the prepotent influence of substrates, ligands, and drugs on the non­
linear kinematic behavior of brain enzymes and membrane receptors via 
alterations in their dynamical stability. 

THE ALLOSTERIC PRINCIPLE: SOLVENT ENTROPY, 
THE HYDROPHOBIC EFFECT, AND 
MACROMOLECULAR STABILITY 

Restraint of autonomous motion among 37° heat-perturbed water molecules, 
decrease in water degrees of freedom, can be caused by the reorganization of 
the previously random hydrogen-bond-preserving network of water around 
non-polar solutes (21, 22). This has been called the hydrophobic effect, bond, 
or interaction (23-25). The energetically significant negative entropy created 
by hydrogen-bonded water straddling hydrophobic moieties drives them 
together, configuring the behavior of biopolymers in solution (26, 27) and, 
along with the finer adjustments of internal and external hydrogen bonding, 
plays the major role in globular and membrane protein structural and dynamical 
stability (28-31). Charged hydrophobic solutes in aqueous solution, e.g. 
biogenic amine or polypeptide salts, reduce the heat capacity and entropy of the 
system due to both electrostatic influences and those related to hydrophobicity 
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NON-EQUILIBRIUM BEHAVIOR 239 

(32). The intrinsically dynamically unstable viscoelastic globular protein in 
solution (33) is perturbed by heated solvent molecules into large, rare, auton­
omous "breathing" motions with time constants in minutes (34-38). The 
functional implications of this fluctuating protein admittance have been estab­
lished by studies such as those demonstrating the need for macromolecular 
motion to make room for the trajectory of CO-to-protoheme and myoglobin 
internal binding domains (39-41) . If the temporal-spatial'randomness of the 
more frequent, small, fast, solvent molecule-driven macromolecular confor­
mational fluctuations is reduced by charged hydrophobic ligands competing for 
solvent entropy and the protein's motions gather to become large and coherent, 
heat capacity calculations show that the molecules contain more than enough 
intrinsic energy (38 kcal mol-I for a protein of molecular weight 25,000) to be 
driven through a trajectory of progressively less stable, more active states 
(folding intermediates) (42, 43), ending in denaturation (44). Long-known 
examples of such ligand-induced processes involve denaturation of protein via 
the reconfiguration of solvent dynamical structure by urea and guanidine salts 
(see Figure 12; 45, 46). 

When a charged hydrophobic ligand is itself the concentration-dependent 
participant in the pattern of reaction rates used to characterize the regulation of 
brain enzymes (e.g. an aromatic amino acid, tetrahydrobiopterin cofactor 
[BH4D or membrane receptor binding (by a drug or polypeptide), the protein 
stability-dependent catalytic or binding behavior (41, 47) becomes an intrinsi­
cally complex nonlinear function of the changing reactant or ligand concentra­
tion [R-Ll;. We call this dual action of [R-Ll the solvent-mediated allosteric 
principle; as is implicit in the case of t, the index i indicates its consideration in 
discrete steps over changing concentration. In tightly conserved water spaces 
like a test tube or the brain (48), all molecules influence the solvent-mediated 
behavior of all others in an almost infinite system of partial differential 
relations, which we dimensionally reduce in expression via the solvent entropy, 
a mediating quantity much like currency in a complex economic system. Such 
an arrangement represents a global dynamic system requiring statistical rather 
than deterministic characterization of its flow. Contrived experimental condi­
tions can generate small parameter zones of linear behavior, indices called 
affinities, and an apparently deterministic kinetic system based on reduced sets 
of ordinary differential equations, but such approaches suppress the expression 
of most of the influential variables and the nonlinear phenomena that occur 
when systems are examined within realistic ranges of concentrations and ratios, 
particularly in aqueous solvent. 

We should note that post-Boltzmann notions of entropy as explored in the 
context of modem mathematical research in ergodic theory with particular 
relevance to mixing indicate that between the limits of randomness and strict 
periodic order there are many, perhaps a practical infinity of, invariant meas-
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240 MANDELL 

ures reflecting informationally metastable states ( 14, 15,49-55). This suggests 
that exquisitely specific, subtle, distributed brain codes can be built from 
conditions that have previously been regarded as electromagnetic and chemical 
randomness. For example, entropy as a distributed property of pharmacologi­
cally altered solvent structural dynamics m�ght constitute the code for the 
15-20 discriminable drug-state-dependencies of behavioral paradigms that 
influence all neurobiological functions (56). Systematically applied measures 
of metastable stochasticity may supply a cross-disciplinary language for the 
pharmacology of brain function as a global dynamical system (57, 58). As 
James Clerk Maxwell wrote, "The true logic of this world is the calculus of 
probabilities. " 

THE PHYSIOLOGICAL CONDITIONS AND BEHA VIOR 
OF TOH AND TPOH 

Despite its 1:  1 reaction stoichiometry (59), relative to its tyrosine (TYR) and 
tryptophan (TRP) cosubstrates BH4 is in far-from-equilibrium concentrations 
in several regions of rat brain (60--66a). As low as 3-5 f.LM in regions active in 
biogenic amine biosynthesis such as rat caudate, compared with amino acid 
concentrations in the range of 15-40 flM, the cofactor is below the affinity 
constants of the mixed function oxygenases for it (67,68), including the most 
recent estimates for purified TOH (220--394 f.LM) and TPOH ( 1 19 f.LM) (69-
7 1). When the physiological catalytic ratios of 3:15  f.LM BH4 to TYR are 
simulated in vitro in a crude caudate nuclear homogenate (72), dihydroxy­
phenylalanine (DOPA) synthesis rates range from 3-5 pmol/mg protein/min­
ute. At 10: 10 flM ratios of BH4 to TRP, similar levels of 5-hydroxytryptophan 
product formation are observed in crude rat raphe nuclear homogenates (73). In 
vivo measures of rat caudate dopamine turnover (74, 75) show a rate of 30 
nmol/gram tissue/hour, which converts to 0.5 pmol/mg tissue/minute, and with 
a rough estimate of brain weight as 10% Lowry protein, a rate very close to the 
in vitro catalytic velocities under conditions of physiological reactant ratios 
emerges: 5 pmol/mg protein/minute. 

Steady-state kinetic studies of TOH require very high reactant concentrations 
to generate linear functions with small (gaussian) variances. They characteristi­
cally exploit BH4 to TYR ratios ranging from 100:30-- 1 100:15  (76--81). 
However, reaction-sequence studies conducted that way have limited physio­
logical significance because of their order-of-magnitude distortions in reactant 
concentrations and ratios and the absence of control of the oxygen concentra­
tion parameter, TOH and TPOH being unsaturated at ambient levels ( 1). 
Recent studies have confirmed work (82) indicating that O2 is a regulatory 
ligand as well as a cosubstrate, i.e. an [R-Lli (82a-87). A recent study 
combining pyrimidine cofactor analogues and heavy oxygen labeling to ex-
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NON-EQUILIBRIUM BEHAVIOR 241 

amine the reaction mechanism also suggests that a cofactor-oxygen adduct may 
be the first intermediate in the amino-acid hydroxylation process (88, 89), 
consistent with the earlier speculation that addition is partially ordered with 
respect to O2 ( 1). 

In vitro studies using a B H4 to amino-acid ratio in the range of 2: 1- 1  : 1 tend to 
make more prominent the inverted V-shaped functions in the kinetics of both 
TOH (70, 79, 90) and TPOH (67, 7 1, 9 1), and similar evidence of this 
nonlinear behavior has been observed in catecholamine biosynthesis rates in 
vivo in response to graded loads of TYR (92). In vivo stoichiometry of reaction 
rates, but not the effect of B� as [R-L]; On macromolecular stability, may be 
regulated by apparent rate-limiting levels of quinonoid dihydropterin reductase 
(QDPR) (93). In addition, the interactive TOH (TPOH)-QDPR shuttle along 
with a diffusive delay creates an opportunity for the biosynthetic oscillations of 
a metabolic reaction-diffusion system (94). In contrast, without competitive 
kinetics, inactivation of either TOH or TPOH by abnormal isomers ofBH4 in a 
concentration- and (of significance for macromolecular stability) temperature­
dependent way reflects the hydrophobic ligand role of BH4 concentration as an 
[R-LJ;, inducing activating-inactivating conformational transitions (95-99). A 
similar explanation can be invoked to account for the parabolic shape of 
uncompetitive DOPA-inhibition fUnctions (8 1 ). When still farther from 
eqUilibrium, i.e. at more nearly physiological ratios of BH4 to amino acid, 1:5 
for TOH and 1: 1 in the TPOH system, over small steps in [R-LJ; or time t the 
kinetic velocity emerges as pharmacological ligand-sensitive, nonlinear, and 
bifurcating functions [called multiple saturation plateaus in earlier studies of 
regulatory enzymes ( 100--102)], integrals demonstrating discontinuous transi­
tions among multiple stable states induced by the progressive increases in the 
solvent-mediated force term, [R-L1;. 

Examined over t, the same far-from-equilibrium, physiological conditions 
generated periodic, quasi-periodic, and non-periodic ("chaotic") oscillations 
characteristic of systems with multiple stability and resembling those seen in 
studies of the glycolytic and peroxidase-oxidase enzyme systems ( 103-108). 
This variety of behaviors over [R-LJ; and t has been observed in brain TOH and 
TPOH systems (58, 72, 73, 94, 109- 1 12). It appears that the high BH4levels 
and abnormal ratios of reactants used in the past in most studies of TOH and 
TPOH kinetics in vitro served to linearize catalytic dynamics over [R-LJ; and t, 

suppressing a more complex and subtle chemical coding capacity intrinsic to 
multidimensional, nonlinear biogenic amine regulation. Patterns of dynamical 
behavior in TOH and TPOH are exquisitely sensitive to small changes in BH4• 
but perhaps not stoichiometrically as much as to its influence as a charged 
hydrophobic ligand, an [R-Ll; (72, 73), a conjecture supported by the finding 
that levels of pterin analogues that induce amphetamine-like hyperactivity and 
stereotypy altered the dynamics but not the mean catalytic velocity of TOH 
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242 MANDELL 

( 1 1 3). In this context it is relevant that in experiments using a coupled QDPR­

phenylalanine hydroxylase assay for BH4 at doses inducing behavioral 
stereotypy but not decreasing striatal dopamine synthesis (74, 75), L­
amphetamine was unique among 35 psychotropic drugs examined in decreas­
ing the pterin significantly (72, 1 14- 1 16). That finding was confirmed recently 
using more specific high-performance liquid chromatographic (HPLC)­

fluorescence detection (62; E. H .  Y. Lee & A. J. Mandell , manuscript in 
preparation). It is perhaps as charged hydrophobic macromolecular stability 
ligands, [R-Ll;, that both amphetamine and amphetamine-induced changes in 
B� dynamics (75, 1 17) alter the regulatory properties ofTOH and TPOH (58, 
1 1 8- 1 25). 

The physiological relevance of dynamic patterns in biogenic amine synthesis 
as seen in vitro with physiological reactant ratios is consistent with growing 
evidence in vivo of metastable statistical patterns of fluctuation in brain 
biogenic amine synthesis and nonlinear diffusion in baseline and perturbation­
induced biogenic amine waves ("flying W's") revealed by electrochemical 
voltammetry (R. Adams, personal communication, 1983; 1 26- 1 3 1). A time 
frame in minutes characterizes the in vitro biogenic amine catalytic statistical 
fluctuations (see above), the electrochemical relaxation waves of voltammetry, 
the tll2 of the early biogenic amine turnover studies ( 1 32- 135), the relaxations 
of the largest motions of globular proteins in solution (34-37, 1 36- 140), the 
average periods of the glycolytic and peroxidase oscillators ( 141, 142), and the 
pulsatile motions of brain cells in tissue culture ( 143). The relatively narrow 
range of mean mass of the monomers of globular protein enzymes (50,000-
60,000) and their common solvent environment suggest a role for the statistical 
phasing of their instability-generated, time-dependent motions in sculpting the 
dynamic geometries of biological process. In this context the pharmacology of 
the regulatory properties of brain TOH and TPOH may implicate more general 
features of biochemical stability. In vitro, the use of low, physiological levels 
of reactants in realistic ratios acts as a noisy catalytic scattering system with 
non-gaussian behavior to statistically amplify these physicochemical instabili­
ties. In vivo, as has been suggested with respect to the weak-field, extracellular 
electromagnetic wave processes in brain ( 144), the informational content of 
brain chemical processes may reside in these patterns of semi-ordered stochas­
ticity (57, 58), a spatially distributed code generated by ion, solvent­
macromolecular, and membrane interactions. 

Statistical recurrence, a pattern of repeated zeros of a function, is an intrinsic 
feature of all bounded finite-dimensional stochastic differential systems ( 145); 
in Levy processes without finite higher moments ,  a characteristic equation 
representing its probability distribution (the Fourier transform into a distribu­
tion of wave numbers as in equilibrium systems), f:P(x,t� dxP(x,t)eikx, 

scales across the absolute dimensions of [R-Lli or t ( 1 1, 12). Thus, enzyme 
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NON-EQUILIBRIUM BEHAVIOR 243 

behavior with near-periodic or aperiodic oscillating behavior in minutes , whose 
phase distribution is gathered by, for example, the regular perturbations of a 
light-dark cycle (146), can be expected to demonstrate more coarse-grained 
oscillations phased into diurnal rhythms in what has been called a self­
similarity across scale (147) . Such rhythms have been observed in brain and 
pineal TOH and TPOH (148-153). In the same vein, some protein motions 
manifest time scales of physical relaxation in months (136), and comparable 
seasonal rhythms in brain biogenic amine levels were the focus of a recent 
conference on biological rhythms in psychiatry (154). 

Although the physical image of a protein fluctuating between metastable 
states is helpful, bounded multidetermined cooperative systems generate pat­
terns of recurrence without such specific deterministic , cycle-generating 
mechanisms-all the participating components contribute to the emergent 
dynamic patterns. A coherent summation of the motions of the microdomains 
of a protein monomer can be visualized in this way (140,155). Thus, TOH and 
TPOH product oscillations in minutes and seasonal variations in brain biogenic 
amine dynamics may reflect the same aggregate , scaling properties of a 
complex system. 

' 

Perhaps the simplest way to appreciate this phenomenon is in an examination 
of the wave forms generated by simple partial differential equation sets (156) 
and the characteristic scaling behavior of turbulent (dissipative) (157) and 
Hamiltonian (conservative) (52 , 158) systems near zones of transition. Modem 
work in stability theory indicates that whereas small perturbations generate 
bifurcation (branching of the solutions of nonlinear equations) in fragile 
periodic dynamics, patterns of aperiodic recurrence are both sensitive and 
remarkably stable structurally (159, 159a). Temporal and spatial slippage in a 
cycle gives it the flexibility necessary to survive, although the biologist is often 
likely to regard this less regular geometry as meaningless noise. In systems 
similar to these biochemical and physiological systems, inability to predict 
behavior precisely using specifiable coefficients in differential equations led 
mathematicians to call such aperiodic oscillation chaos . A probabilistic 
approach to these chaotic dynamical systems, however, has shown them to 
contain invariant measure (160, 161) . 

TRE BERA VIOR OF TOR AND TPOH AS A 
MULTIDETERMINED [R-Llj and t-DEPENDENT 
FLOW OF PROBABILITY 

Consistent with the findings of the previous review (1), there is continuing 
evidence that TOH and TPOH are sensitive to a large array of physiologically 
relevant influences. The regulatory importance of the dynamical physical state 
of rat caudate TOH (162), emphasized in this development and studied pre-
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244 MANDELL 

viously in relation to membrane and membrane-like components (78, 163-
166), appears to be supported by recent confirmation of the role of particulate 
versus soluble subcellular location in determining the affinity of the enzyme for 
BItt but not for TYR (167); by current ultrastructural immunocytochemical 
studies demonstrating that 82% of TOH is in membrane-specialized punctate 
varicosities, TOH-relevant microscopic structures reported for the first time 
(168); by incubation with bacterial phospholipases altering its kinetic constants 
(169); and by a demonstration of both kinetic activation and inactivation (the 
characteristic multiphasic influence of an [R-Lli; see below) by phosphatidyli­
nositol (170). Phospholipid-induced, pH-dependent activation of rat brainstem 
TPOH has also been reported (171) . The charged nature of native brain TOH 
and TPOH has been studied recently using a new mini-column isoelectric­
focusing pH-gradient technique (J . H. Jackson & A . .J. Mandell, manuscript in 
preparation) and is consistent with significant macromolecular and membrane 
interactions, kinetic changes in interaction with charged tubulin molecules 
(172), and the need to prepare an HPLC column with albumin to allow TOH 
recovery (173) . The recent failure to relate activity state and adherence to 
membranes of adrenal TOH using histochemical staining is not surprising in 
that these membrane-depolarization, ion-sensitive phenomena (166, 174) be­
have like dynamical and not permanent histological changes (175) . The sensi­
tivity of both TOH and TPOH to negative electrostatic fields as first demon­
strated for TOH in 1972 (78, 163) has been elegantly confirmed using heparin 
in interactional studies with polypeptides (176) . Some of the same effects of 
chondroitin sulfate polyelectrolytes have been reported for TPOH (177, 178) . 
The field-like sensitivity of TOH and TPOH to the influence of ions (179) and 
the electromagnetico-chemical environment in which brain TOH and TPOH 
function suggest that the regulatory effect of anions, including carboxylic acids 
(172, 180) and electrical field stimulation (181), may not be unrelated. The 
Gibbs-Donnan counterpoint to electrical-chemical negativity in neuronal mem­
brane dynamics, the cations including H+, K+, Na+, Ca++, Mn++, Mg++, 
the actions of chelating agents, organic cations, iontophores, K + active cardiac 
glycosides (and other polyhydroxy compounds, including ascorbic acid and 
glucose) have also been shown to play influential roles in the regulation of these 
brain enzymes' conformational-kinetic stability (181a-191). Related to the 
issue of pH is the role of specificity of the reducing conditions of the enzymatic 
reaction, including sulfhydryl groups, protection against H202, and the role of 
iron, which has not yet been irrefutably demonstrated to be at the enzymes' 
reaction center (71, 82a, 88, 192-197). 

Beyond the long history of both the activation and inactivation properties of 
BH4, TYR, and TRP ( 1 ) ,  of greatest relevance to the [R-Ll-TOH (TPOH)­
solvent interaction with respect to the induction of a destabilizing-activating­
denaturing trajectory for the physical change in the enzyme protein is the recent 
and remarkable report of Kaufman & Mason (198) indicating that hydrophobic 
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NON-EQUILIBRIUM BEHAVIOR 245 

amino acids like methionine and norleucine activated the hepatic mixed­
function oxygenase phenylalanine hydroxylase with respect to its physiological 
substrate . In addition, and consistent with the activating induction of large 
coherent unfolding motions by hydrophobic ally constrained solvent and result­
ing increased ease of substrate approach to the buried active site (39--4 1 ,  47) , 
the structural requirements of amino-acid substrates were relaxed (both 
methionine and norleucine were hydroxylated) when the enzyme was activated 
in any of several different ways. The same solvent-mediated dynamical stabil­
ity factors may account for uncompetitive influences on TOH by other non­
specific hydrophobic moieties such as unphysiological pterins (96-98) and the 
tetrahydroisoquinolines (199) . There have been several demonstrations of the 
anatomical proximity of a variety of biologically active peptides considered 
here to be charged hydrophobic ligands for TOH and TPOH (200-204) , as well 
as catalytic activation by some (205-207), including chains as large as albumin 
(208) , which also stabilizes (173) . In vivo evidence of enzyme inactivation by 
large loads oftyrosine (92) , and even the mysterious antidepressant efficacy of 
D-phenylalanine, equivalent to that of a combination of the D and L isomers and 
manifesting a two-week latency as is required for the antidepressant effects of 
tricyclic drugs, small doses of phenothiazines, or tryptophan loads (209, 210) , 
may be explained by a charge and hydrophobic-effect increase in brain-solvent 
free energy and the induction of an associated destabilization-activation confor­
mational trajectory of TOH and TPOH associated with an antidepressant 
effect-correlated increase in brain biogenic amine synthesis (211) . 

There is rather clear evidence that a multiplicity of ligands influential on 
TOH and TPOH is always present in vitro, that in the brain these systems 
manifest multiple quasistable states, and that physiological reactant concentra­
tions and ratios generate non-equilibrium catalytic scattering behavior rather 
than gaussian linear or curvilinear functions manifesting only up-and-down 
regulation. These conditions , then, bring to brain chemical processes the 
potential for expression as subtle and complex as the behavioral output of the 
brain itself. We will proceed now to describe kinematic processes as changes in 
sizes and shapes in the geometries of the flows of probability, which can be 
quantitated and predicted by suitable equations, and portray both individual and 
phase-dependent molecular mechanisms as statistically defined patterns of 
global dynamical behavior. In these considerations the primary unit of data will 
be the A value: 

A 
Ex-x; 
Ex + x [Eq. 1] 

the value of catalytic velocity, x;, at a particular value of [R-Ll; or t as a 
difference from expectation, Ex, the value of the corresponding point on a 
statistically determined regression line representing the aggregate of the data as 
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246 MANDELL 

nonnalized by the sum of the average level, Ex, and slope x. This condition 
allows a function of increasing or decreasing velocity over [R-LJ; or t, where t 
refers to (dA1dthR-Lj, to be treated as a nonnalized series of values over a zero 
slope. The dynamical behavior of the system is represented by a first-order 
equation in A: 

dA 
---:-d(:-:::[R::--�L]::-i,�t)- = V(A;[R-L];, t) [Eq. 2] 

where V is a velocity function of A. We condense this high-dimensional 
process into a first-order autonomous equation representing the phase velocity 
of A, eliminating its explicit dependence on [R-L]; or t: 

_----,---,. __ --:---:dA----,-.---=-____ -- = V (A) 
d(H+ ,K+ ,Na+ ,CA ++ ... [R-Ll; ... t) [Eq. 3] 

and 

I [R-L]O - [R-L]i' to - ti 
A-' dA 
I YeA) [Eq. 4] 
Ao 

Thennal inactivation studies of TOH and TPOH systems evidence three 
interconvertible kinetic confonnations and a dynamical trajectory between 
them (99,212-215), with nonnalized velocity levels of approximately 1.0-+ 
2.5 -+ 0.3, suggesting an exponential relationship among the states . Conditions 
that facilitate activation also inactivate (1 , 99, 169, 216, 217) . Kept at room 
temperature and sampled every minute, rat raphe TPOH activity as a sequence 
of A values demonstrates this kinetic-confonnational trajectory in one con­
tinuous experiment (Figure I; 73 , 218) . Purified mouse mastocytoma TPOH 
also manifests an iron-reducing system (H202 ?)-sensitive set of three discrete 
states (219); those studies demonstrate nonnalized activity ratios of 1.0 -+ 5.0 
-+ 0.2, also suggesting three logarithmically (power law) related activity 
levels. Assuming a greater than root mean square proportionality under far­
from-equilibrium conditions between the catalytic velocities and the average 
amplitude of the variations , RMSA, we can represent the changes from acti­
vated (a), low activity (I), and baseline (b) states as a birth and death trajectory 
of A in the phase plane portraying the flow of probability as a one-dimensional 
dynamical system with a random distribution of phase (Figure 2) . Described as 
the nonlinear spring-like folding-unfolding dynamics of globular proteins in 
solution with intennediate metastable states (42, 43, 220, 221) , the viscoelastic 
protein (33) with reaction component-sensitive stability properties accrues a 
nonlinear macroscopic response to heated solvent perturbations over time, 
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requiring a memory kernel, for example, an exponential instantaneous distribu­
tion of states, Gib - a) and Gia - I). As seen in the substrate activation­
inactivation functions below , conditions that facilitate activation also augment 
the inactivation process rather symmetrically (216, 217) , as in Figure 3, so that 
GT(b,a,l) can be represented by a convolution of exponential processes 
(AoexpkA , Amaxexp-kA), which reconfigures the phase portrait of AIY(A) into a 
hysteresis loop with singularities at the dV(A) = 0 transitions (Figure 4, left), 
seen perhaps more clearly in a potential energy graph of AIU(A) (Figure 4,  
right) representing transitions through metastable states. Synchronization of 
phase among these globular protein enzymes with nonlinear oscillations of their 
cosubstrate admittances occurs in the regions of the singularities, dV(A) = 0 
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vtc�� [R-L] i 
Figure 3 

VrAJ U :.4) 

Figure 4 

(146). In addition, these zones of transition, degenerate neighborhoods of 
multivalued inverses, f:V(A) - A, are the ones showing greatest changes in 
dynamical behavior with small changes in parameter values. Autonomously 
emergent changes as in Figure 1 suggest that physiological function and its 
regulation with respect to changes in chemical information flow require very 
little energy in addition to solvent perturbation in zones of molecular instability 
and associated changes in the distributions of phase. The trivial amount of 
energy required to regulate processes through their instabilities suggests a 
neurochemical explanation for the thermodynamically paradoxical findings 
that wild psychosis and sleep manifest the same mean levels of brain glucose 
and oxygen utilization in man (222, 223). 

Periodicity (one frequency), quasi-periodicity (two frequencies), and aperi­
odicity (three or more distinct frequencies and/or chaos) have been observed in 
the product concentration fluctuations of TPOH (73 , 111) and TOH over t as in 
Figure 5 (58, 72). Transitions between multiple dynamical regimes (see the 
protein denaturation curves in Figure 12) have also been observed across [R-Lli 
for TPOH (Ca++) (Figure 6, left) ( l09) and TOH (TYR) (Figure 6, right) (72). 

HOW MACROSCOPIC DYNAMICAL COMPLEXITY CAN 
EMERGE FROM ACTIVATION-DEACTIVATION 
PROCESSES IN A POPULATION OF ENZYME PROTEINS 

The way in which parabolic manifolds portraying density-dependent processes, 
like those seen in the substrate kinetics of TOH and TPOH (Figure 3) generate 
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Figure 6 
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* * •• • :::**HH::::::::** 

both periodic and aperiodic dynamics across small changes in parameter values 
is a current focus of interest in statistical physics (17-20). In the interest of a 
simplification not ordinarily permitted for a far-from-equilibrium system, we 
linearize G(T) so that dA(b - a)ldt = B(A) and dA(a - l)ldt = D(A). The 
equation of motion for A then becomes: 

d(A) 
-d-:-:(=[R"""="-L7- ] j,-:-t)- = V[B(A) - D(A)] [Eq. 5] 

At low values of [R-L]i or t, B > D, and beyond some critical transition D > B, 
as in Figure 3. Ao can be seen as a stable fixed point and the second singularity, 
a metastable stationary state, is at Amaxo d(A) = 0, V[B(A)] = V[D(A)] as in 
Figures 3 and 4. It has long been known that increased density of active forms 
of TOH and TPOH produced by activation, dialysis, or steps toward purifica­
tion leads to monomeric aggregation, loss of catalytic activity, and precipita­
tion of denatured protein (67, 70, 71, 78, 90, 163, 170, 173, 196, 224-230) . 
The mechanism may involve resonance in large, slow protein motions facilitat­
ing coherent. high-amplitude oscillations as in Figure 1 and progression 
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through three metastable states toward irreversible unfolding (44,23 1) .  Thus, 
two kinds of inactivation are seen: D as a consequence of the trajectory through 
activation (as in Figures 2-4) and D, dependent on the presence of other 
activated monomers, i.e. d(A) = A(B - D) - DA2. We combine D and f> in a 
single expression representing the density dependence of the inactivation 
process: 

d(A) = V (BA - DA2) [Eq. 6] 

From the symmetries seen in Figure 3, B(A) = D(A) , B = 0 = r, a generalized 
force term that can represent [R-L], making the manifold: 

d(A) = V [rA(l - A) 1 [Eq. 7] 

which in the context of the sequence of repeated samplings of TOH and TPOH 
over discrete steps of [R-Ll; or t is the classical logistics map (232). 

A,+1 = rAt (I-A,) [Eq. 8] 

This simple discrete difference equation generates a parabolic curve (Figure 7) 
whose slope is dependent on [R-Ll; and whose evolutionary behavior over time 
resembles that seen in Figure 5 .  

More detailed development of  stoachastic birth and death processes ( 1 2) 
shows them to generate bifurcations that reflect kinematic multi stability , seen 
in Figure 6 and modeled by Equation 8 as in Figure 7. The oxidase-peroxidase 
system has long been known to display parameter-sensitive bifurcations from 
eqUilibrium to single and multiple frequencies and/or chaos (106 , 142, 233-
236). When periodic versus aperiodic (chaotic) behavior of Equation 8 is 
plotted as a function of r above values of 3.4 (237, 238), a pattern resembling 
that in Figure 8 is observed: 

/ ............ '" I \ I \ I \ - ------/ r = 3.00 \ 

/� NSfJj----
I \ f _ _ _ _ _ _ 

f \ 
f 3.43 \ 

�-" � I :'\ ... - .. .. ... - .. 

/ � 0�-�-0 / . fIWVJVJ I 
j-Y. ,V,Y',\ I 

I 3.544 \ f 3.55 \ . 

Figure 7 
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Figure 8 

Chaotic regimes and those that are strictly or partially ordered in time are seen 
closely juxtaposed in parameter space (239). As operative across [R-Lli' in 
addition to the feature of sensitivity to differences in initial conditions (161), 
this principle accounts for the instability manifested by the TOH and TPOH 
systems when examined under physiological, far-from-equilibrium conditions 
(72, 73, 111-112). Concentration-dependent stabilization and destabilization 
by Bl4 (98, 213), activation and inactivation by phospholipids (170), amino­
acid substrate activation and inhibition (216, 217), multiphasic effects of 
increasing levels of in vitro amphetamine (58), and many of the conflicting 
reports of the influence of various ligands on these systems (1) are examples of 
these dynamics. The characteristic anomalous and wide clinical dose-response 
curves of psychotropic drugs, for example the dosage windows for the clinical 
efficacy of tricyclic antidepressant drugs, are consonant with the nonlinear 
stability properties of these biogenic amine biosynthetic systems over increas­
ing [R-Lli (240, 241). 

A STATISTICAL KINEMATICS OF NON-EQUILIBRIUM 
STEADY STATES: GENERALIZATION ACROSS 
NEUROPSYCHOBIOLOGICAL LEVELS 

Most transform techniques useful in dealing with nonlinear systems (242. 243) 
are limited by the rather strict requirements of their mathematical assumptions. 
For example, the stationarity, convergence, and adequate sample length 
assumed by Fourier transform techniques, displayed qualitatively in Figure 5, 
are not fulfilled by lOO-point studies in triplicate (72) of far-from-equilibrium 
enzyme system fluctuations (244-246). The third and fourth moments of the 
probability density distributions reflecting rare, high-amplitude events as seen 
in computer simulations of protein motion (140)-the critical fluctuations that 
bifurcate distribution functions (l3)-require sample lengths beyond those 
now possible in brain enzyme kinetic experiments (247). In their place is 
sought a reliable and meaningful quantitative measure of the pattern of be­
havior of the A values across [R-Lli and t that would reflect the shape of the 
probability distribution, indicate the frequency content of the A value varia-
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tions, portray the system's stability along the vertical dimension of Figure 8, 
reflect the number of independent phases or enzyme forms contributing to the 
process as its dynamic dimensionality, and scale across a wide range of 
intervals in time so that drug influences could be compared among several 
neuropsychobiological data bases. In combination with the RMSA, the frac­
tional characteristic exponent D A ,  the geometric dimensionality of the A value 
integral ( 1 1 ,  147,239, 248) serves these purposes quite well (72, 73, 94, 247). 
This power law dependence of measures made on cooperative biological 
systems is analogous to the scaling law descriptions of statistical physics ( 1 2) .  
Repeated measurements of the catalytic activity of an enzyme homogenate over 
[R-LJ; or t, synchronized by continuous rhythmic perturbation in a metabolic 
shaker (72, 73, 249), are transformed as in Equation 1, f:V;� A;, creating the 
new. normalized series of A values upon which a measure of the texture, DA, 
can be made with values ranging from 1 for a smooth line to 2 for an irregular, 
space-filling (two-dimensional) function. 

The relationship between the roughness of the surface of a multidimensional 
volume representing a dynamic system and its underlying cooperativity as 
dimensionality (the number of independent coordinates projecting information 
onto the one-dimensional sequence of A values) can be analogized from the 
following argument (250). Removing the middle 90% of a line of unit length 
(dim = 1) leaves 10% at the "surface" of the two ends; removing a circle of 
diameter 0.9 from the unit disc (dim = 2) leaves about 20% at the surface; in 
dim = 3 the removal of a concentric ball of diameter 0.9 from the unit sphere 
leaves about 28% at the surface. In the limit the internal volume of a geometric 
object of diameter 0.9 and dimension <1>, (0. 9)<l>�0 as �oo. In the geometry of 
multidimensional volumes, the more independent contributors of mechanism 
or phase, the higher the dimensionality and the greater the arc length of the 
perimeter relative to its volume. The minimum number of unit balls of diameter 
e, N(e), required to cover the function increases with an increase in dimen­
sionality (25 1) ,  which is seen as an increase in DA• 

DA is calculated as the slope created when the log of the diameters of a 
sequence of increasingly larger spheres is plotted on the x-axis against the log 
of the number of balls of each size required to cover the function projected onto 
the y-axis. The more irregular the surface, the more crevices are lost by the 
progressively larger spheres, the steeper the slope, the larger the DA (72). A 
microcomputer program for the calculation is available upon request. 

With few mathematical assumptions and remarkable statistical stability , the 
geometric dimension has been applied successfully to electron spin relaxation 
measurements on myoglobin and ferricytochrome C (252). It can also quantify 
precisely the elusive behavior of far-from-equilibrium kinematic scattering 
systems. It serves as the characteristic exponent of non-gaussian distribution 
functions that are without finite higher moments (11, 253); it describes the 
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shape of the tail of these distributions as an extremal measure that scales as the 
mean first-passage time (254); it gives a single numerical value to long-range 
correlations,  thus serving as an index of the frequency content of the process 
(255); it serves as a numerical solution to undifferentiable functions (256); it 
transforms directly to a measure of the vertical dimension of Figure 8 called the 
sum of the Lyapounov exponents , quantifying the system's stability (239, 
257-259). Since DA represents the convergence in a relationship between a 
measure and its measurement, it has symmetry with respect to dilation, i .e .  the 
index is independent of its absolute size. In this way , DA is self-similar across 
temporal scales in processes like the internal symmetries of eddies within 
eddies within eddies in the dissipative dynamics of hydrodynamic turbulence 
(260, 26 1), the infinity within conservative Hamiltonian systems in the alter­
nating patterns of invariant curves, and stochasticity seen in the homoclinic 
regions between attractor domains (14, 15, 52, 158, 262, 263). With the 
enzymes of the biogenic amine systems omnipresent in brain regions,  it is 
perhaps not surprising that the effects of ligands such as amphetamine, lithium, 
chlorimipramine, and thyrotropin-releasing hormone (TRH) demonstrate simi­
lar alterations in DA and DA-like dynamics in TOH and TPOH systems, 
[3H]-spiroperidol binding, interspike intervals of single units, electroencepha­
lographic dynamics,  animal behavior, and clinical response (58, 94, 263a-
266). A similarity in the power-law dependence of multiple measures made on 
a single complex system is consistent with its status as an integrated organiza­
tion (267), not an unreasonable claim with respect to psychotropic drug­
influenced central nervous system function. 

The way the DA to RMSA relationship as &DAI&RMSA reflects the system's 
cooperativity as examined over an ensemble of experiments under the same 
conditions can be seen in the two contrasting views of how fluctuations in 
complex nonlinear systems evolve over time (Figure 9). 

Figure 9 

� . 
• 

./ 1'---...,.. • t --. 1 t 2 

The Eulerian view (Figure 9 , left) shows that fluctuations enter the small scales 
of motion as fast, frequent perturbations by heated solvent molecules and 
propagate across the 16 time scales of protein motion from 10-12 seconds (268) 
to minutes ( 136), the total error energy amplitude represented as the RMSA 
(269). For globular proteins in solution this process is influenced by changes in 
solvent �G induced by charged and hydrophobic ligands. The Lagrangian view 
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(Figure 9, right) describes the extent of the maintenance of the neighborhood 
topology in the evolutionary process, a systems property called mixing re­
flected in the value of D A (52, 16 1); we see a high mixing system in which two 
points that were together initially become widely separated over time. This 
effect is regulated by ions, drugs, and other influences on phase that promote or 
prevent the synchronization of molecular motions. The differential of the D A to 
the RMSA, a dispersion relation shown in Figure 10, 

RMSA 
Figure 10 

reflects the degree of coupling, the maintenance of the integrity of a neighbor­
hood of values over time, in what can very generally be called a stochastic 
frequency-amplitude graph. A negative slope reflects a cooperative dynamic 
that is more subject to bifurcations and phase transitions, whereas a zero to 
positive slope indicates relative independence among the contributing elements 
or phases and the greater stability of "noisy periodicity" (94, 159a, 270). The 
differences between the slopes of the regressions of ensembles from experi­
ments conducted under various psychopharmacological conditions can be 
tested for statistical significance (73, 230, 247). 

Psychotropic drug-induced increases in -BDAIBRMSA, as seen at the 
molecular dynamic level in the TPOH system in the presence of tricyclic 
antidepressant drugs, are associated with hyperbolic, bifurcating saturation 
functions and the emergent periodicity and phase transitions characteristic of 
systems of anharmonic oscillators perturbed by increased coupling (27 1) in 
several neurobiological and clinical phenomena (73, 263a, 265, 266, 272). 
Decreases in -BDAIBRMSA induced by physiological levels of lithium are 
associated with more sigmoid saturation functions and demonstrate the stability 
of systems composed of more independent elements 02, 73, 265, 266, 272). 
Depending upon dose, amphetamine induces both these contrasting conditions 
in a variety of neuropsychobiological contexts (58, 94, 263a, 273). 

NON-EQUILIBRIUM BEHA VIOR AS MULTIPLE 
RECEPTOR LIGAND-BINDING PROCESSES 

The influence of a ligand on the kinetics of its own binding behavior as an 
[R-LL the allosteric principle (274), was invoked long ago to explain the 
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nonlinear behavior of oxygen binding to hemoglobin (275-277). Those classi­
cal non-Langmuir, non-Michaelis functions manifested fractional characteris­
tic exponents of about 2. 8 (278). Such behavior is easily analogized to more 
modem views of the nonlinear dynamics of ligand-induced conformational 
changes in macromolecular and membrane stability via ligand-induced changes 
in solvent entropy (26-28, 30, 3 1, 35-37, 279) called the hydrophobic effect 
(23-25). One recent demonstration of the role of solvent influences on macro­
molecular motion as reflected in receptor binding kinetics was a direct one 
exploiting systematic variations in solvent viscosity (41). 

Ligand-binding techniques used in current pharmacological studies exploit 
extremely high concentrations of (cold) hydrophobic ligands, most of which 
generate multiple discontinuities in the saturation functions (280, 281), not 
unlike the bifurcational behavior seen in Figure 6 over [R-LJ; and in Figure 5 
over t and modeled by Equation 8 and Figure 7 (see also Figure 1 2). In this 
context, binding is viewed as adherence to a macromolecular-membrane moi­
ety conformationally altered in a nonlinear manner in the direction of denatura­
tion and precipitation by increasing concentrations of charged and hydrophobic 
ligands. These dynamics are consistent with a degree of structural-dynamical 
specificity of the ligand as well as the less specific nonlinear force characteris­
tics of [R-LJ; as seen in Figures 7, 8, and 12. Anomalous behavior in time 
observed in the early pharmacological ligand-binding studies (282), i.e. the 
demonstration that the low-affinity system saturated several minutes before the 
high-affinity one, suggests conformational interconversion as in Figures 1, 2, 
and 4 rather than the simultaneous presence of multiple receptor membrane 
proteins. An extensive new literature on specific coding in entropies (see 
above) makes structural specificity transformable into equal or even more 
specific solvent-mediated dynamical messages and offers an explanation for 
the ever growing receptor-system kinetic heterogeneities and inconsistencies in 
the experimental literature (282a, 282b). Bathing a system of relatively 
homogeneous nicotinic-cholinergic microsacs from E.electricus and T. mar­
morata in high concentrations of cholinergic ligand is the condition under 
which the depolarization mechanism is desensitized, the time dynamics bifur­
cate into fast and slow processes (283), and multiple kinetic binding functions 
can be observed (283-287). Examples of [R-L];-induced bifurcations in kinetic 
functions are seen in Figure 1 1: on the left in eH]-TRH binding to pituitary cell 
membrane (288); in the center in [3H]-etorphine binding to liposomes contain­
ing cerebrosides (289), a preparation not inconsistent with the orderly and 
complex kinetics of binding to other non-biological, surface-active materials 
(290, 29 1); and on the right in a nonlinear Scatchard plot the use of which 
is actually inappropriate for nonlinear systems (292), with two high-affin­
ity unstable stationary states in eHJ-spiperone-haloperidol competition bind­
ing to an olefactory tubercle crude membrane preparation from the mouse 
(293). 
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[R-Ll; 
Figure 11 

The similarity of these iterative binding functions to classical mUltiphasic 
protein denaturation curves over increasing concentrations of solvent-active, 
charged hydrophobic ligands such as urea or guanidine salts (45) and lithium 
bromide (294) is rather striking (Figure 1 2). 

Guanidine Lithium Bromide 
Figure 12 

Multiple stable states across increasing concentrations of charged hydropho­
bic [R-Ll as in Figure 1 1  generate the expected instabilities in the time domain 
as in Figure 13: eH]-cAMP binding to purified plasma membranes from D. 
discoideum (295) on the left; cumulative eH]-spiroperidol binding to crude rat 
striatal membranes (296) in the center; and a similar preparation with more 
frequent sampling displayed as differences from mean velocity (264) on the 
right. 

(minutes) 
Figure 13 

Most of these complex nonlinear behaviors, called surface phenomena in the 
context of [3H]-spiperone binding to crude striatal membranes (297), were 
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demonstrated several years ago in the context of studies of insulin-receptor 
interactions (297a, 298) and included the multiphasic , concave upward Eadie­
Scatchard plot (299); the same [R-Lli-induced increases and decreases in 
binding as seen in Figure 3 and modeled in Equation 8 and Figure 7 (300, 301); 
and anomalous time-dependent dissociation behavior in the context of the 
affinities of ligand binding saturation functions (297a, 301 ,  302) . A dynamic 
(Figure 14, right) in contrast to a structural (Figure 14,  left) scheme portraying 
the interactions between [R-Lli and membrane receptors is seen as an exchange 
of solvent entropies (303) between ligand and receptor polypeptide chains 
(279) , a system with, if anything, more degrees of freedom with respect to the 
specific encoding of information than that of a static, lock-and-key structure. A 
successful ligand-membrane receptor interaction may depend upon resonance 
in the ligand-induced, solvent-mediated receptor response function. 

TWO RECEPTOR MECHANISMS 

A) KEY IN LOCK 

ld 
� 

L + R = RL 

[R)[LI [iil) = Kl  (eq.) 

[RT - RL)[LI - K � - l 

;;r 

[RLI [Ll 
[RTI = � 

[RLI 
= [RT)[LI 

Kl + [Ll 1 .� 
� 0.5 

- - - - i 
[Ll 

B) DYNAMIC INSTABILITY 

Exchange Of_� 
solvent entrop�p � 

�I� "' \  f3 /)n ..... 

Figure 14 

Internalization 
of receptor LIPID 

'-� WATER� --�' -

A n ll(hp) 

The receptor peptide is portrayed as a transitional J3-strand-like form, unstable 
in water (29, 304-307) and a configuration seen often in binding domains of 
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proteins (308-31 1). It is perturbed by a [R-LJ;-induced change in the neighbor­
ing solvent structural dynamics into a volume-reduced, more a-helical form as 
seen in lysine and leucine copolymer transitions (314), and hydrophobic 
negative solvent entropy drives it into the lipid bilayer, a process called 
receptor internalization (312). In this less hydrophobic, lower aG environment 
it can reform. Similar solvent-mediated peptide-peptide dynamics are observed 
in studies of protein folding (306). It should be noted that there is evidence that 
the internalization process in non-central nervous system tissue is associated 
with receptor-mediated endocytosis (313, 314). The membrane perturbation 
associated with these events could serve as a low-energy, instability-induced 
trigger for the subsequent transconductional events. Exquisitely solvent struc­
ture-sensitive rates of spontaneous depolarization (for example, after small 
changes in sodium concentration) characterize the behavior of artificial lipid 
bilayer models of neuronal membranes (315; M. Montal , personal communica­
tion, 1981). 

Since water structure and dynamics in a closed system are temporally and 
spatially distributed properties (21, 22), global properties of pharmacological 
and peptide charged hydrophobic ligands can be rationalized as induced 
changes in solvent entropy over large regions of the brain and reflected in 
influences on macromolecular and membrane stability. This suggests that 
predictions about the relationship between structures and functions of families 
of [R-LJ;'s could be predicated on the basis of their influences on solvent 
entropies. Due to the precise quantification of this property in kcal for each 
amino acid, brain polypeptide structure and function can serve as a test of this 
[R-LJ;, solvent entropy hypothesis. 

A SOLVENT ENTROPY SEQUENCE APPROACH TO 
BRAIN POLYPEPTIDE STRUCTURE AND FUNCTION 

Recent systematic studies of codon substitution errors and secondary and 
tertiary structural equivalences in the evolution of polypeptide chains indicate 
that amino-acid exchanges are made on the basis of similarities in their 
affinities for water (309, 3 16, 3 17). Four families of five amino acids each have 
been characterized by conversion as energies via their equilibrium kinetics of 
transport from organic solvents to water as an index of hydrophobicity in 
kcallmol: 0.00 � 0. 10, 0.66 � 0.87, 1.57 � 2. 17, and 2.67 � 3.77 
(318-320). In 13 short spans, consecutive amino acids alternate between low 
and high values for hydrophobicity; a hydrophobic side chain is surrounded by 
two hydrophilic or apolar residues (321-323). a-Helical short spans have a 
two-fold greater wavelength in the hydrophobicity sequence of their residues in 
which on the average two hydrophobic side chains are followed by two that are 
hydrophilic or apolar (323-325). The increased adjacency of hydrophobic 
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groups in a longer wavelength, a-helix-like structure leads to more negative 
solvent entropy-forced self-aggregation between the residues (a critical mass 
may serve to recruit even more of the chain), a reduced volume of solvent 
occupancy, and less solvent ::;tructural distortion; a sequence varying more 
frequently between hydrophobic and hydrophilic or apolar residues as in a 
�-strand occupies a greater solvent volume and induces greater destabilizing 
aG in solvent entropy (307). For example, a-helices become conformationally 
stable in solution in 10-7 seconds (326), whereas the �-conformation requires 
minutes (327, 328). 

On the basis of these findings and the above development involving solvent­
mediated macromolecular stability, two members with well-established differ­
ences in potency were selected from each of six families of neurobiologically 
active peptides . The polypeptides were normalized to equivalent lengths; the 
sequence of deviations from mean hydrophobicity in kcal was determined for 
each peptide, treated as in Equation 1, and its D A value calculated (303, 329). 
As [R-L];, the faster-frequency, more �-strand-like series, having a higher DA 
than the more smoothly varying a-helix sequences, were predicted to generate 
higher solvent aG-mediated macromolecular and membrane instability, with a 
resulting increase in central nervous system potency (Figure 15). 

oj. 
Soma TRH 25 
GRF  / CRF 

ACTH 
1 9.39 1' 1 · 1 8  

GIP I VIP 

1 .0 

Leu·enk Dynorph 
IH,dorPh 

1 - 1 5 1 -3 1  

1 . 1  1 . 2 1 .3 1 .4 1 .  
0 • 

0 • 

0 • 

0 • 

0 • 

0 • 

* Hydrophobicity sequence in kcal 
Figure 15 

5 

The chart demonstrates that a higher DA (solid dot) is manifested by the more 
behaviorally activating of each pair of peptides, i.e. by thyrotropin-releasing 
hormone than by somatostatin-25, by corticotropin-releasing factor than by 
growth-hormone releasing factor, by the first segment of adrenocorticotrophic 
hormone than by the second, by vasoactive intestinal peptide than by gastroin­
testinal peptide, by dynorphin than by leu-enkephalin, and by the entire 
�-endorphin than by the first half of its sequence (330-336; R. Guillemin, 
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personal communication, 1983; P. Brazeau, personal communication, 1983). 
The nonlinearity of influences of an [R-Ll; on the activity and stability prop­
erties ofTOH and TPOH, seen in Figures 3 and 6 as modeled in Equation 8 and 
Figures 7 and 8,  is also observed in the excitatory, inhibitory, and nil effects of 
the same peptide, depending on neural cell type, anatomical location, and 
associated neurotransmitter ligands (335, 336). The characteristic partial 
antagonisms among the participants in a multidetermined system rather than the 
monotonic ordering of values of the geometric dimension on the hydrophobic­
ity sequence in relation to effect, as in Figure 15, may better predict the actions 
of related neural peptide pairs. For example, substance P (DA = 1. 10), dense in 
terminals A IO mesencephalic dopamine cell bodies, induces an amphetamine­
like hyperactivity syndrome when infused into the ventral tegmental region 
(337); neurotensin (DA = 1 .34), located similarly (338), blocks amphetamine­
induced hyperactivity and stereotypy when given intracerebrally (339). 
Perhaps an aggregate of regionally involved brain peptides can be summed 
logarithmically like Lyapounov exponents of stability (237-239) in order to 
predict their multiplicatively summed influence on a system (303). 

This approach also suggests the possibility that the one ligand molecule-one 
receptor protein moiety stoichiometry implicit in the use of molarity instead of 
weight as the meaningful unit in studies of dose-response functions of 
polypeptides may not be correct. For example, the difference in the exponents, 
DA, to the base 2.5, the ratio of the masses per molecule of dynorphin versus 
leu-enkephalin as the log of the dose equivalence would predict the roughly 
three orders of magnitude ratio of their potencies (33 1). a- and l3-endorphin, 
the latter about twice the mass of the former per mol , were about equally potent 
when compared on the basis of weight (R. Guillemin, personal communica­
tion, 1983). 

The ubiquity of a- and l3-sequence short spans in all peptides and proteins 
(323), the differences in the stability-altering character of the relationships of 
the two patterns with aqueous solvent, and the five- to ten-fold increase in 
degrees of freedom in specific amino-acid exchanges using a simple up-down 
code of variation in hydrophobicities suggest the possibility that the history of 
difficulty in constructing a scheme for the custom synthesis of peptides (340) 
may have been due to a requirement for too much specificity. A macro-code of 
a and 13 short span rather than amino-acid sequences is suggested. A recent 
model with this sort of relaxed structural requirement is explained in terms of an 
a-helical peptide's  asymmetric potential for membrane binding (34 1). The 
simplest of all possibilities involves a binary code, a dot versus dash transition 
probability, each successive residue crossing the mean or not in a mod-2 
sequence dynamic of hydrophobicity (303). A perfect l3-strand would have a 
pea) of 1.0 , and an a-helical short span, a pea) of 0.5. The amino-acid 
sequences of corticotropin-releasing factor and a polypeptide with very similar 

A
nn

u.
 R

ev
. P

ha
rm

ac
ol

. T
ox

ic
ol

. 1
98

4.
24

:2
37

-2
74

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 C
en

tr
al

 C
ol

le
ge

 o
n 

12
/1

2/
11

. F
or

 p
er

so
na

l u
se

 o
nl

y.



NON-EQUILIBRIUM BEHAVIOR 26 1 

actions and potency , urotensin-I (342) , differ in 20 of 41 residues . In the binary 
code of hydrophobicity there are two adjacent transpositions , at 22 and 39, and 
only two differences, at 27 and 33 (303, 329). 

A reflection of the competition for solvent entropy between a macromolecu­
lar system (TPOH) and a polypeptide (leu-enkephalin) examined under control 
conditions and in the presence of the neuropeptide is seen in Figure 16. An 
[R-Lli-induced change in the kinetic scattering pattern is seen in a more 
gaussian distribution of A values from multiple simultaneous determinations, 
although the median velocity remains the same: 

+ 

Control 

Figure 16 

+ 1 .0 J.LM 
Leu-enkephalin 

The statistical dynamics of non-equilibrium brain enzyme and receptor 
systems may offer a new experimental language for studies in molecular 
psychopharmacology. 
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