

NON-EQUILIBRIUM BEHAVIOR OF SOME BRAIN ENZYME AND RECEPTOR SYSTEMS

Arnold J. Mandell

Department of Psychiatry, University of California at San Diego, La Jolla, California 92093

The previous article in this review dealing with the regulatory properties of brain tyrosine (TOH) and tryptophan hydroxylase (TPOH) systems (1) emphasized (a) *multidimensionality*: almost all the components present under physiological and assay conditions, ranging from electromagnetic fields through hydrophobic ligands to reducing equivalents, influence in one way or another the rate functions representing catalytic activities; (b) *nonlinearity*: critical zones of ligand concentration, curvilinear, even intermittent amount-effect functions, and inconsistencies among results depending on small differences in parameter values are consonant with the prominent role of cooperative interactions among the many stated and unstated dimensions (coordinates) regulating catalytic systems; (c) *conformational instability*: in the protein macromolecular components of TOH and TPOH, conformational instabilities are evidenced by 20 years of failure to purify the enzyme proteins in amounts useful for systematic extensive kinetic characterization, by their extreme friability under conditions of storage, by their multiplicity of reported molecular weights and kinetic constants, and by their markedly increased ease of denaturation and precipitation after the removal of components from their normal milieu by dialysis and enrichment procedures. That article expressed hope that a multivariate approach to studies of TOH and TPOH regulation could be developed to allow data reduction through pattern analysis in place of one- or two-variable kinetic experiments and quantification by Michaelis or Hill constants (1).

This review updates the 1978 one with respect to research on the regulatory properties of TOH and TPOH as reported in the literature through early 1983 with the exception of the cyclic nucleotide-protein phosphorylation schemata (recently involving calmodulin), the current status of which is reviewed else-

where (2-8). The emphasis here will be on a quantitative approach to qualitative patterns in behavior of complex nonlinear systems like these, ones with which the molecular psychopharmacologist must continually deal. The principles derived will be extended to nonlinear phenomena seen in the currently popular ligand-binding systems with a few examples. The relevance of a new approach to cross-disciplinary pharmacological studies of brain function will also be demonstrated. A conjecture concerning a new structure-function approach to brain polypeptides emphasizing solvent-mediated dynamic macromolecular stability will serve to integrate these concepts.

The mathematical formalisms of this approach are properly derived from modern approaches to stochastic differential equations, including phase transition theory (8a-13) as enriched by current advances in nonlinear dynamics (14-20). This difficult and esoteric theoretical route is not practically useful to those of us working in laboratories of biochemical pharmacology. The emphasis therefore will be on geometric intuition (the behavior of functions in the phase plane), physical mechanistic images, quantitative indices derivable from ones familiar to those who have used elementary statistics, and a metaphorically representative equation that, despite the complexity of its behavior, is both easily understood and numerically solvable on a hand calculator. Elementary representations of solvent entropy, the hydrophobic effect, and macromolecular dynamics from current research in the physics of globular proteins in solution will be used to explain the *solvent-mediated allosteric principle* treated here as the prepotent influence of substrates, ligands, and drugs on the nonlinear kinematic behavior of brain enzymes and membrane receptors via alterations in their *dynamical stability*.

THE ALLOSTERIC PRINCIPLE: SOLVENT ENTROPY, THE HYDROPHOBIC EFFECT, AND MACROMOLECULAR STABILITY

Restraint of autonomous motion among 37° heat-perturbed water molecules, decrease in water degrees of freedom, can be caused by the reorganization of the previously random hydrogen-bond-preserving network of water around non-polar solutes (21, 22). This has been called the hydrophobic effect, bond, or interaction (23-25). The energetically significant negative entropy created by hydrogen-bonded water straddling hydrophobic moieties drives them together, configuring the behavior of biopolymers in solution (26, 27) and, along with the finer adjustments of internal and external hydrogen bonding, plays the major role in globular and membrane protein structural and dynamical stability (28-31). Charged hydrophobic solutes in aqueous solution, e.g. biogenic amine or polypeptide salts, reduce the heat capacity and entropy of the system due to both electrostatic influences and those related to hydrophobicity

(32). The intrinsically dynamically unstable viscoelastic globular protein in solution (33) is perturbed by heated solvent molecules into large, rare, autonomous “breathing” motions with time constants in minutes (34–38). The functional implications of this fluctuating protein admittance have been established by studies such as those demonstrating the need for macromolecular motion to make room for the trajectory of CO-to-protoheme and myoglobin internal binding domains (39–41). If the temporal-spatial randomness of the more frequent, small, fast, solvent molecule-driven macromolecular conformational fluctuations is reduced by charged hydrophobic ligands competing for solvent entropy and the protein’s motions gather to become large and coherent, heat capacity calculations show that the molecules contain more than enough intrinsic energy (38 kcal mol⁻¹ for a protein of molecular weight 25,000) to be driven through a trajectory of progressively less stable, more active states (folding intermediates) (42, 43), ending in denaturation (44). Long-known examples of such ligand-induced processes involve denaturation of protein via the reconfiguration of solvent dynamical structure by urea and guanidine salts (see Figure 12; 45, 46).

When a charged hydrophobic ligand is itself the concentration-dependent participant in the pattern of reaction rates used to characterize the regulation of brain enzymes (e.g. an aromatic amino acid, tetrahydrobiopterin cofactor [BH₄]) or membrane receptor binding (by a drug or polypeptide), the protein stability-dependent catalytic or binding behavior (41, 47) becomes an intrinsically complex nonlinear function of the changing reactant or ligand concentration [R-L]_i. We call this dual action of [R-L] the solvent-mediated allosteric principle; as is implicit in the case of *i*, the index *i* indicates its consideration in discrete steps over changing concentration. In tightly conserved water spaces like a test tube or the brain (48), all molecules influence the solvent-mediated behavior of all others in an almost infinite system of partial differential relations, which we dimensionally reduce in expression via the solvent entropy, a mediating quantity much like currency in a complex economic system. Such an arrangement represents a global dynamic system requiring statistical rather than deterministic characterization of its flow. Contrived experimental conditions can generate small parameter zones of linear behavior, indices called affinities, and an apparently deterministic kinetic system based on reduced sets of ordinary differential equations, but such approaches suppress the expression of most of the influential variables and the nonlinear phenomena that occur when systems are examined within realistic ranges of concentrations and ratios, particularly in aqueous solvent.

We should note that post-Boltzmann notions of entropy as explored in the context of modern mathematical research in ergodic theory with particular relevance to mixing indicate that between the limits of randomness and strict periodic order there are many, perhaps a practical infinity of, invariant meas-

ures reflecting informationally metastable states (14, 15, 49–55). This suggests that exquisitely specific, subtle, distributed brain codes can be built from conditions that have previously been regarded as electromagnetic and chemical randomness. For example, entropy as a distributed property of pharmacologically altered solvent structural dynamics might constitute the code for the 15–20 discriminable drug-state-dependencies of behavioral paradigms that influence all neurobiological functions (56). Systematically applied measures of metastable stochasticity may supply a cross-disciplinary language for the pharmacology of brain function as a global dynamical system (57, 58). As James Clerk Maxwell wrote, “The true logic of this world is the calculus of probabilities.”

THE PHYSIOLOGICAL CONDITIONS AND BEHAVIOR OF TOH AND TPOH

Despite its 1:1 reaction stoichiometry (59), relative to its tyrosine (TYR) and tryptophan (TRP) cosubstrates BH_4 is in far-from-equilibrium concentrations in several regions of rat brain (60–66a). As low as 3–5 μM in regions active in biogenic amine biosynthesis such as rat caudate, compared with amino acid concentrations in the range of 15–40 μM , the cofactor is below the affinity constants of the mixed function oxygenases for it (67, 68), including the most recent estimates for purified TOH (220–394 μM) and TPOH (119 μM) (69–71). When the physiological catalytic ratios of 3:15 μM BH_4 to TYR are simulated *in vitro* in a crude caudate nuclear homogenate (72), dihydroxyphenylalanine (DOPA) synthesis rates range from 3–5 pmol/mg protein/minute. At 10:10 μM ratios of BH_4 to TRP, similar levels of 5-hydroxytryptophan product formation are observed in crude rat raphé nuclear homogenates (73). *In vivo* measures of rat caudate dopamine turnover (74, 75) show a rate of 30 nmol/gram tissue/hour, which converts to 0.5 pmol/mg tissue/minute, and with a rough estimate of brain weight as 10% Lowry protein, a rate very close to the *in vitro* catalytic velocities under conditions of physiological reactant ratios emerges: 5 pmol/mg protein/minute.

Steady-state kinetic studies of TOH require very high reactant concentrations to generate linear functions with small (gaussian) variances. They characteristically exploit BH_4 to TYR ratios ranging from 100:30–1100:15 (76–81). However, reaction-sequence studies conducted that way have limited physiological significance because of their order-of-magnitude distortions in reactant concentrations and ratios and the absence of control of the oxygen concentration parameter, TOH and TPOH being unsaturated at ambient levels (1). Recent studies have confirmed work (82) indicating that O_2 is a regulatory ligand as well as a cosubstrate, i.e. an $[\text{R-L}]_i$ (82a–87). A recent study combining pyrimidine cofactor analogues and heavy oxygen labeling to ex-

amine the reaction mechanism also suggests that a cofactor-oxygen adduct may be the first intermediate in the amino-acid hydroxylation process (88, 89), consistent with the earlier speculation that addition is partially ordered with respect to O_2 (1).

In vitro studies using a BH_4 to amino-acid ratio in the range of 2:1–1:1 tend to make more prominent the inverted U-shaped functions in the kinetics of both TOH (70, 79, 90) and TPOH (67, 71, 91), and similar evidence of this nonlinear behavior has been observed in catecholamine biosynthesis rates in vivo in response to graded loads of TYR (92). In vivo stoichiometry of reaction rates, but not the effect of BH_4 as $[R-L]_i$ on macromolecular stability, may be regulated by apparent rate-limiting levels of quinonoid dihydropterin reductase (QDPR) (93). In addition, the interactive TOH (TPOH)-QDPR shuttle along with a diffusive delay creates an opportunity for the biosynthetic oscillations of a metabolic reaction-diffusion system (94). In contrast, without competitive kinetics, inactivation of either TOH or TPOH by abnormal isomers of BH_4 in a concentration- and (of significance for macromolecular stability) temperature-dependent way reflects the hydrophobic ligand role of BH_4 concentration as an $[R-L]_i$, inducing activating-inactivating conformational transitions (95–99). A similar explanation can be invoked to account for the parabolic shape of uncompetitive DOPA-inhibition functions (81). When still farther from equilibrium, i.e. at more nearly physiological ratios of BH_4 to amino acid, 1:5 for TOH and 1:1 in the TPOH system, over small steps in $[R-L]_i$ or time t the kinetic velocity emerges as pharmacological ligand-sensitive, nonlinear, and bifurcating functions [called multiple saturation plateaus in earlier studies of regulatory enzymes (100–102)], integrals demonstrating discontinuous transitions among multiple stable states induced by the progressive increases in the solvent-mediated force term, $[R-L]_i$.

Examined over t , the same far-from-equilibrium, physiological conditions generated periodic, quasi-periodic, and non-periodic ("chaotic") oscillations characteristic of systems with multiple stability and resembling those seen in studies of the glycolytic and peroxidase-oxidase enzyme systems (103–108). This variety of behaviors over $[R-L]_i$ and t has been observed in brain TOH and TPOH systems (58, 72, 73, 94, 109–112). It appears that the high BH_4 levels and abnormal ratios of reactants used in the past in most studies of TOH and TPOH kinetics in vitro served to linearize catalytic dynamics over $[R-L]_i$ and t , suppressing a more complex and subtle chemical coding capacity intrinsic to multidimensional, nonlinear biogenic amine regulation. Patterns of dynamical behavior in TOH and TPOH are exquisitely sensitive to small changes in BH_4 , but perhaps not stoichiometrically as much as to its influence as a charged hydrophobic ligand, an $[R-L]_i$ (72, 73), a conjecture supported by the finding that levels of pterin analogues that induce amphetamine-like hyperactivity and stereotypy altered the dynamics but not the mean catalytic velocity of TOH

(113). In this context it is relevant that in experiments using a coupled QDPR-phenylalanine hydroxylase assay for BH_4 at doses inducing behavioral stereotypy but not decreasing striatal dopamine synthesis (74, 75), L-amphetamine was unique among 35 psychotropic drugs examined in decreasing the pterin significantly (72, 114–116). That finding was confirmed recently using more specific high-performance liquid chromatographic (HPLC)-fluorescence detection (62; E. H. Y. Lee & A. J. Mandell, manuscript in preparation). It is perhaps as charged hydrophobic macromolecular stability ligands, $[\text{R-L}]_i$, that both amphetamine and amphetamine-induced changes in BH_4 dynamics (75, 117) alter the regulatory properties of TOH and TPOH (58, 118–125).

The physiological relevance of dynamic patterns in biogenic amine synthesis as seen in vitro with physiological reactant ratios is consistent with growing evidence in vivo of metastable statistical patterns of fluctuation in brain biogenic amine synthesis and nonlinear diffusion in baseline and perturbation-induced biogenic amine waves (“flying W’s”) revealed by electrochemical voltammetry (R. Adams, personal communication, 1983; 126–131). A time frame in minutes characterizes the in vitro biogenic amine catalytic statistical fluctuations (see above), the electrochemical relaxation waves of voltammetry, the $t^{1/2}$ of the early biogenic amine turnover studies (132–135), the relaxations of the largest motions of globular proteins in solution (34–37, 136–140), the average periods of the glycolytic and peroxidase oscillators (141, 142), and the pulsatile motions of brain cells in tissue culture (143). The relatively narrow range of mean mass of the monomers of globular protein enzymes (50,000–60,000) and their common solvent environment suggest a role for the statistical phasing of their instability-generated, time-dependent motions in sculpting the dynamic geometries of biological process. In this context the pharmacology of the regulatory properties of brain TOH and TPOH may implicate more general features of biochemical stability. In vitro, the use of low, physiological levels of reactants in realistic ratios acts as a noisy catalytic scattering system with non-gaussian behavior to statistically amplify these physicochemical instabilities. In vivo, as has been suggested with respect to the weak-field, extracellular electromagnetic wave processes in brain (144), the informational content of brain chemical processes may reside in these patterns of semi-ordered stochasticity (57, 58), a spatially distributed code generated by ion, solvent-macromolecular, and membrane interactions.

Statistical recurrence, a pattern of repeated zeros of a function, is an intrinsic feature of all bounded finite-dimensional stochastic differential systems (145); in Levy processes without finite higher moments, a characteristic equation representing its probability distribution (the Fourier transform into a distribution of wave numbers as in equilibrium systems), $f: P(x,t) \rightarrow dxP(x,t)e^{ikx}$, scales across the absolute dimensions of $[\text{R-L}]_i$ or t (11, 12). Thus, enzyme

behavior with near-periodic or aperiodic oscillating behavior in minutes, whose phase distribution is gathered by, for example, the regular perturbations of a light-dark cycle (146), can be expected to demonstrate more coarse-grained oscillations phased into diurnal rhythms in what has been called a self-similarity across scale (147). Such rhythms have been observed in brain and pineal TOH and TPOH (148–153). In the same vein, some protein motions manifest time scales of physical relaxation in months (136), and comparable seasonal rhythms in brain biogenic amine levels were the focus of a recent conference on biological rhythms in psychiatry (154).

Although the physical image of a protein fluctuating between metastable states is helpful, bounded multidetermined cooperative systems generate patterns of recurrence without such specific deterministic, cycle-generating mechanisms—all the participating components contribute to the emergent dynamic patterns. A coherent summation of the motions of the microdomains of a protein monomer can be visualized in this way (140, 155). Thus, TOH and TPOH product oscillations in minutes and seasonal variations in brain biogenic amine dynamics may reflect the same aggregate, scaling properties of a complex system.

Perhaps the simplest way to appreciate this phenomenon is in an examination of the wave forms generated by simple partial differential equation sets (156) and the characteristic scaling behavior of turbulent (dissipative) (157) and Hamiltonian (conservative) (52, 158) systems near zones of transition. Modern work in stability theory indicates that whereas small perturbations generate bifurcation (branching of the solutions of nonlinear equations) in fragile periodic dynamics, patterns of aperiodic recurrence are both sensitive and remarkably stable structurally (159, 159a). Temporal and spatial slippage in a cycle gives it the flexibility necessary to survive, although the biologist is often likely to regard this less regular geometry as meaningless noise. In systems similar to these biochemical and physiological systems, inability to predict behavior precisely using specifiable coefficients in differential equations led mathematicians to call such aperiodic oscillation chaos. A probabilistic approach to these chaotic dynamical systems, however, has shown them to contain invariant measure (160, 161).

THE BEHAVIOR OF TOH AND TPOH AS A MULTIDETERMINED $[R-L]_i$ and t -DEPENDENT FLOW OF PROBABILITY

Consistent with the findings of the previous review (1), there is continuing evidence that TOH and TPOH are sensitive to a large array of physiologically relevant influences. The regulatory importance of the dynamical physical state of rat caudate TOH (162), emphasized in this development and studied pre-

viously in relation to membrane and membrane-like components (78, 163–166), appears to be supported by recent confirmation of the role of particulate versus soluble subcellular location in determining the affinity of the enzyme for BH₄ but not for TYR (167); by current ultrastructural immunocytochemical studies demonstrating that 82% of TOH is in membrane-specialized punctate varicosities, TOH-relevant microscopic structures reported for the first time (168); by incubation with bacterial phospholipases altering its kinetic constants (169); and by a demonstration of both kinetic activation and inactivation (the characteristic multiphasic influence of an [R-L]; see below) by phosphatidylinositol (170). Phospholipid-induced, pH-dependent activation of rat brainstem TPOH has also been reported (171). The charged nature of native brain TOH and TPOH has been studied recently using a new mini-column isoelectric-focusing pH-gradient technique (J. H. Jackson & A. J. Mandell, manuscript in preparation) and is consistent with significant macromolecular and membrane interactions, kinetic changes in interaction with charged tubulin molecules (172), and the need to prepare an HPLC column with albumin to allow TOH recovery (173). The recent failure to relate activity state and adherence to membranes of adrenal TOH using histochemical staining is not surprising in that these membrane-depolarization, ion-sensitive phenomena (166, 174) behave like dynamical and not permanent histological changes (175). The sensitivity of both TOH and TPOH to negative electrostatic fields as first demonstrated for TOH in 1972 (78, 163) has been elegantly confirmed using heparin in interactional studies with polypeptides (176). Some of the same effects of chondroitin sulfate polyelectrolytes have been reported for TPOH (177, 178). The field-like sensitivity of TOH and TPOH to the influence of ions (179) and the electromagnetico-chemical environment in which brain TOH and TPOH function suggest that the regulatory effect of anions, including carboxylic acids (172, 180) and electrical field stimulation (181), may not be unrelated. The Gibbs-Donnan counterpoint to electrical-chemical negativity in neuronal membrane dynamics, the cations including H⁺, K⁺, Na⁺, Ca⁺⁺, Mn⁺⁺, Mg⁺⁺, the actions of chelating agents, organic cations, iontophores, K⁺ active cardiac glycosides (and other polyhydroxy compounds, including ascorbic acid and glucose) have also been shown to play influential roles in the regulation of these brain enzymes' conformational-kinetic stability (181a–191). Related to the issue of pH is the role of specificity of the reducing conditions of the enzymatic reaction, including sulphydryl groups, protection against H₂O₂, and the role of iron, which has not yet been irrefutably demonstrated to be at the enzymes' reaction center (71, 82a, 88, 192–197).

Beyond the long history of both the activation and inactivation properties of BH₄, TYR, and TRP (1), of greatest relevance to the [R-L]-TOH (TPOH)-solvent interaction with respect to the induction of a destabilizing-activating-denaturing trajectory for the physical change in the enzyme protein is the recent and remarkable report of Kaufman & Mason (198) indicating that hydrophobic

amino acids like methionine and norleucine activated the hepatic mixed-function oxygenase phenylalanine hydroxylase with respect to its physiological substrate. In addition, and consistent with the activating induction of large coherent unfolding motions by hydrophobically constrained solvent and resulting increased ease of substrate approach to the buried active site (39–41, 47), the structural requirements of amino-acid substrates were relaxed (both methionine and norleucine were hydroxylated) when the enzyme was activated in any of several different ways. The same solvent-mediated dynamical stability factors may account for uncompetitive influences on TOH by other non-specific hydrophobic moieties such as unphysiological pterins (96–98) and the tetrahydroisoquinolines (199). There have been several demonstrations of the anatomical proximity of a variety of biologically active peptides considered here to be charged hydrophobic ligands for TOH and TPOH (200–204), as well as catalytic activation by some (205–207), including chains as large as albumin (208), which also stabilizes (173). In vivo evidence of enzyme inactivation by large loads of tyrosine (92), and even the mysterious antidepressant efficacy of D-phenylalanine, equivalent to that of a combination of the D and L isomers and manifesting a two-week latency as is required for the antidepressant effects of tricyclic drugs, small doses of phenothiazines, or tryptophan loads (209, 210), may be explained by a charge and hydrophobic-effect increase in brain-solvent free energy and the induction of an associated destabilization-activation conformational trajectory of TOH and TPOH associated with an antidepressant effect-correlated increase in brain biogenic amine synthesis (211).

There is rather clear evidence that a multiplicity of ligands influential on TOH and TPOH is always present *in vitro*, that in the brain these systems manifest multiple quasistable states, and that physiological reactant concentrations and ratios generate non-equilibrium catalytic scattering behavior rather than gaussian linear or curvilinear functions manifesting only up-and-down regulation. These conditions, then, bring to brain chemical processes the potential for expression as subtle and complex as the behavioral output of the brain itself. We will proceed now to describe kinematic processes as changes in sizes and shapes in the geometries of the flows of probability, which can be quantitated and predicted by suitable equations, and portray both individual and phase-dependent molecular mechanisms as statistically defined patterns of global dynamical behavior. In these considerations the primary unit of data will be the *A* value:

$$A = \frac{Ex - x_i}{\bar{Ex} + \bar{x}} \quad [\text{Eq. 1}]$$

the value of catalytic velocity, x_i , at a particular value of $[R-L]_i$ or t as a difference from expectation, Ex , the value of the corresponding point on a statistically determined regression line representing the aggregate of the data as

normalized by the sum of the average level, \bar{Ex} , and slope \dot{x} . This condition allows a function of increasing or decreasing velocity over $[R-L]_i$ or t , where t refers to $(dA/dt)_{[R-L]}$, to be treated as a normalized series of values over a zero slope. The dynamical behavior of the system is represented by a first-order equation in A :

$$\frac{dA}{d([R-L]_i, t)} = V(A; [R-L]_i, t) \quad [Eq. 2]$$

where V is a velocity function of A . We condense this high-dimensional process into a first-order autonomous equation representing the phase velocity of A , eliminating its explicit dependence on $[R-L]_i$ or t :

$$\frac{dA}{d(H^+, K^+, Na^+, CA^{++} \dots |R-L|_i \dots t)} = V(A) \quad [Eq. 3]$$

and

$$\int [R-L]_0 - [R-L]_i, t_0 - t_i = \int_{A_0}^{A_i} \frac{dA}{V(A)} \quad [Eq. 4]$$

Thermal inactivation studies of TOH and TPOH systems evidence three interconvertible kinetic conformations and a dynamical trajectory between them (99, 212–215), with normalized velocity levels of approximately $1.0 \rightarrow 2.5 \rightarrow 0.3$, suggesting an exponential relationship among the states. Conditions that facilitate activation also inactivate (1, 99, 169, 216, 217). Kept at room temperature and sampled every minute, rat raphé TPOH activity as a sequence of A values demonstrates this kinetic-conformational trajectory in one continuous experiment (Figure 1; 73, 218). Purified mouse mastocytoma TPOH also manifests an iron-reducing system (H_2O_2 ?)-sensitive set of three discrete states (219); those studies demonstrate normalized activity ratios of $1.0 \rightarrow 5.0 \rightarrow 0.2$, also suggesting three logarithmically (power law) related activity levels. Assuming a greater than root mean square proportionality under far-from-equilibrium conditions between the catalytic velocities and the average amplitude of the variations, RMS_A , we can represent the changes from activated (a), low activity (l), and baseline (b) states as a birth and death trajectory of A in the phase plane portraying the flow of probability as a one-dimensional dynamical system with a random distribution of phase (Figure 2). Described as the nonlinear spring-like folding-unfolding dynamics of globular proteins in solution with intermediate metastable states (42, 43, 220, 221), the viscoelastic protein (33) with reaction component-sensitive stability properties accrues a nonlinear macroscopic response to heated solvent perturbations over time,

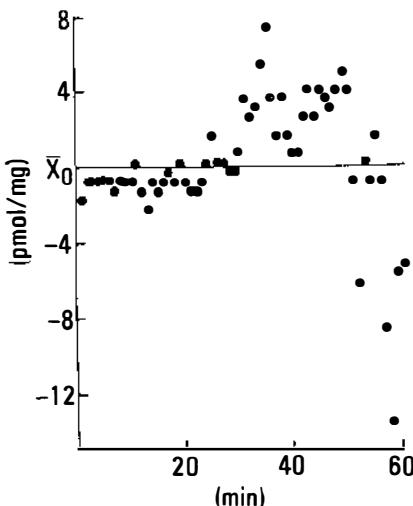


Figure 1

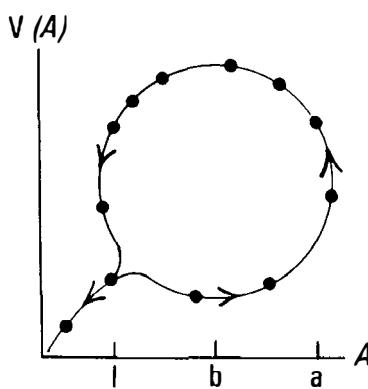


Figure 2

requiring a memory kernel, for example, an exponential instantaneous distribution of states, $G_r(b \rightarrow a)$ and $G_r(a \rightarrow b)$. As seen in the substrate activation-inactivation functions below, conditions that facilitate activation also augment the inactivation process rather symmetrically (216, 217), as in Figure 3, so that $G_r(b, a, l)$ can be represented by a convolution of exponential processes ($A_0 \exp^{kA}, A_{\max} \exp^{-kA}$), which reconfigures the phase portrait of $A/V(A)$ into a hysteresis loop with singularities at the $dV(A) = 0$ transitions (Figure 4, left), seen perhaps more clearly in a potential energy graph of $A/U(A)$ (Figure 4, right) representing transitions through metastable states. Synchronization of phase among these globular protein enzymes with nonlinear oscillations of their cosubstrate admittances occurs in the regions of the singularities, $dV(A) = 0$

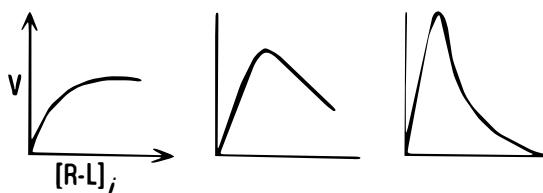


Figure 3

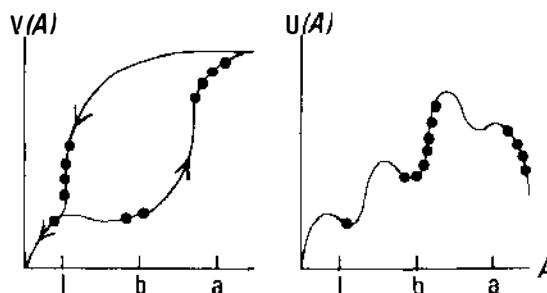


Figure 4

(146). In addition, these zones of transition, degenerate neighborhoods of multivalued inverses, $f: V(A) \rightarrow A$, are the ones showing greatest changes in dynamical behavior with small changes in parameter values. Autonomously emergent changes as in Figure 1 suggest that physiological function and its regulation with respect to changes in chemical information flow require very little energy in addition to solvent perturbation in zones of molecular instability and associated changes in the distributions of phase. The trivial amount of energy required to regulate processes through their instabilities suggests a neurochemical explanation for the thermodynamically paradoxical findings that wild psychosis and sleep manifest the same mean levels of brain glucose and oxygen utilization in man (222, 223).

Periodicity (one frequency), quasi-periodicity (two frequencies), and aperiodicity (three or more distinct frequencies and/or chaos) have been observed in the product concentration fluctuations of TPOH (73, 111) and TOH over t as in Figure 5 (58, 72). Transitions between multiple dynamical regimes (see the protein denaturation curves in Figure 12) have also been observed across $[R-L]_i$ for TPOH (Ca^{++}) (Figure 6, left) (109) and TOH (TYR) (Figure 6, right) (72).

HOW MACROSCOPIC DYNAMICAL COMPLEXITY CAN EMERGE FROM ACTIVATION-DEACTIVATION PROCESSES IN A POPULATION OF ENZYME PROTEINS

The way in which parabolic manifolds portraying density-dependent processes, like those seen in the substrate kinetics of TOH and TPOH (Figure 3) generate

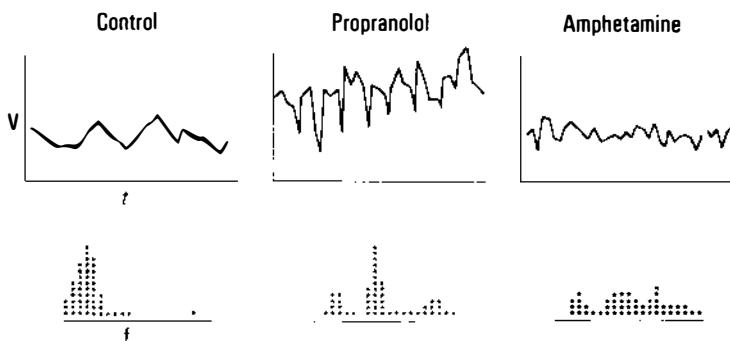


Figure 5

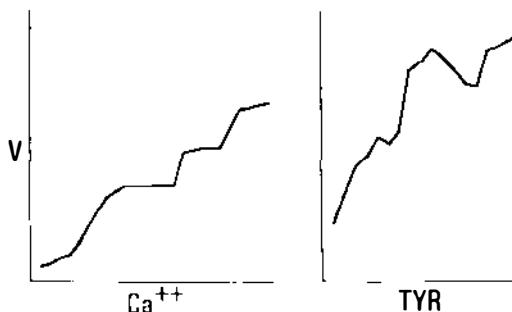


Figure 6

both periodic and aperiodic dynamics across small changes in parameter values is a current focus of interest in statistical physics (17–20). In the interest of a simplification not ordinarily permitted for a far-from-equilibrium system, we linearize $G(\tau)$ so that $d_A(b \rightarrow a)/dt = B(A)$ and $d_A(a \rightarrow l)/dt = D(A)$. The equation of motion for A then becomes:

$$\frac{d(A)}{d([R-L]_i, t)} = V[B(A) - D(A)] \quad [\text{Eq. 5}]$$

At low values of $[R-L]_i$ or t , $B > D$, and beyond some critical transition $D > B$, as in Figure 3. A_0 can be seen as a stable fixed point and the second singularity, a metastable stationary state, is at A_{\max} , $d(A) = 0$, $V[B(A)] = V[D(A)]$ as in Figures 3 and 4. It has long been known that increased density of active forms of TOH and TPOH produced by activation, dialysis, or steps toward purification leads to monomeric aggregation, loss of catalytic activity, and precipitation of denatured protein (67, 70, 71, 78, 90, 163, 170, 173, 196, 224–230). The mechanism may involve resonance in large, slow protein motions facilitating coherent, high-amplitude oscillations as in Figure 1 and progression

through three metastable states toward irreversible unfolding (44, 231). Thus, two kinds of inactivation are seen: D as a consequence of the trajectory through activation (as in Figures 2–4) and \bar{D} , dependent on the presence of other activated monomers, i.e. $d(A) = A(B - D) - \bar{D}A^2$. We combine D and \bar{D} in a single expression representing the density dependence of the inactivation process:

$$d(A) = V(BA - DA^2) \quad [\text{Eq. 6}]$$

From the symmetries seen in Figure 3, $B(A) = D(A)$, $B = D = r$, a generalized force term that can represent $[R-L]$, making the manifold:

$$d(A) = V[rA(1 - A)] \quad [\text{Eq. 7}]$$

which in the context of the sequence of repeated samplings of TOH and TPOH over discrete steps of $[R-L]_i$ or t is the classical logistics map (232).

$$A_{t+1} = rA_t(1 - A_t) \quad [\text{Eq. 8}]$$

This simple discrete difference equation generates a parabolic curve (Figure 7) whose slope is dependent on $[R-L]_i$ and whose evolutionary behavior over time resembles that seen in Figure 5.

More detailed development of stochastic birth and death processes (12) shows them to generate bifurcations that reflect kinematic multistability, seen in Figure 6 and modeled by Equation 8 as in Figure 7. The oxidase-peroxidase system has long been known to display parameter-sensitive bifurcations from equilibrium to single and multiple frequencies and/or chaos (106, 142, 233–236). When periodic versus aperiodic (chaotic) behavior of Equation 8 is plotted as a function of r above values of 3.4 (237, 238), a pattern resembling that in Figure 8 is observed:

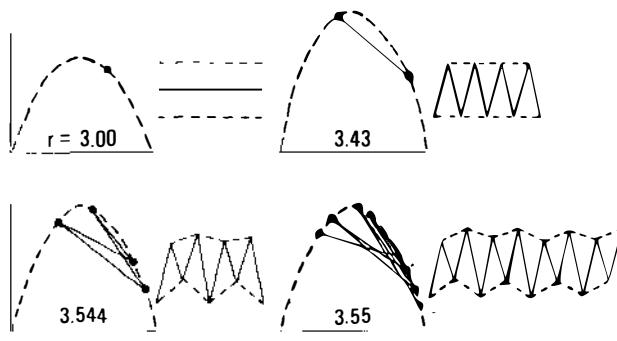


Figure 7

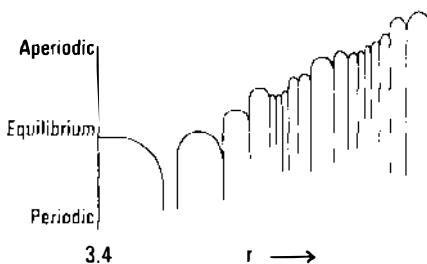


Figure 8

Chaotic regimes and those that are strictly or partially ordered in time are seen closely juxtaposed in parameter space (239). As operative across $[R-L]_i$, in addition to the feature of sensitivity to differences in initial conditions (161), this principle accounts for the instability manifested by the TOH and TPOH systems when examined under physiological, far-from-equilibrium conditions (72, 73, 111–112). Concentration-dependent stabilization and destabilization by BH_4 (98, 213), activation and inactivation by phospholipids (170), amino-acid substrate activation and inhibition (216, 217), multiphasic effects of increasing levels of *in vitro* amphetamine (58), and many of the conflicting reports of the influence of various ligands on these systems (1) are examples of these dynamics. The characteristic anomalous and wide clinical dose-response curves of psychotropic drugs, for example the dosage windows for the clinical efficacy of tricyclic antidepressant drugs, are consonant with the nonlinear stability properties of these biogenic amine biosynthetic systems over increasing $[R-L]_i$ (240, 241).

A STATISTICAL KINEMATICS OF NON-EQUILIBRIUM STEADY STATES: GENERALIZATION ACROSS NEUROPSYCHOBIOLOGICAL LEVELS

Most transform techniques useful in dealing with nonlinear systems (242, 243) are limited by the rather strict requirements of their mathematical assumptions. For example, the stationarity, convergence, and adequate sample length assumed by Fourier transform techniques, displayed qualitatively in Figure 5, are not fulfilled by 100-point studies in triplicate (72) of far-from-equilibrium enzyme system fluctuations (244–246). The third and fourth moments of the probability density distributions reflecting rare, high-amplitude events as seen in computer simulations of protein motion (140)—the critical fluctuations that bifurcate distribution functions (13)—require sample lengths beyond those now possible in brain enzyme kinetic experiments (247). In their place is sought a reliable and meaningful quantitative measure of the pattern of behavior of the A values across $[R-L]_i$ and t that would reflect the shape of the probability distribution, indicate the frequency content of the A value varia-

tions, portray the system's stability along the vertical dimension of Figure 8, reflect the number of independent phases or enzyme forms contributing to the process as its dynamic dimensionality, and scale across a wide range of intervals in time so that drug influences could be compared among several neuropsychobiological data bases. In combination with the RMS_A , the fractional characteristic exponent D_A , the geometric dimensionality of the A value integral (11, 147, 239, 248) serves these purposes quite well (72, 73, 94, 247). This power law dependence of measures made on cooperative biological systems is analogous to the scaling law descriptions of statistical physics (12). Repeated measurements of the catalytic activity of an enzyme homogenate over $[R-L]$; or t , synchronized by continuous rhythmic perturbation in a metabolic shaker (72, 73, 249), are transformed as in Equation 1, $f:V_i \rightarrow A_i$, creating the new, normalized series of A values upon which a measure of the texture, D_A , can be made with values ranging from 1 for a smooth line to 2 for an irregular, space-filling (two-dimensional) function.

The relationship between the roughness of the surface of a multidimensional volume representing a dynamic system and its underlying cooperativity as dimensionality (the number of independent coordinates projecting information onto the one-dimensional sequence of A values) can be analogized from the following argument (250). Removing the middle 90% of a line of unit length ($\text{dim} = 1$) leaves 10% at the "surface" of the two ends; removing a circle of diameter 0.9 from the unit disc ($\text{dim} = 2$) leaves about 20% at the surface; in $\text{dim} = 3$ the removal of a concentric ball of diameter 0.9 from the unit sphere leaves about 28% at the surface. In the limit the internal volume of a geometric object of diameter 0.9 and dimension ϕ , $(0.9)^\phi \rightarrow 0$ as $\phi \rightarrow \infty$. In the geometry of multidimensional volumes, the more independent contributors of mechanism or phase, the higher the dimensionality and the greater the arc length of the perimeter relative to its volume. The minimum number of unit balls of diameter ϵ , $N(\epsilon)$, required to cover the function increases with an increase in dimensionality (251), which is seen as an increase in D_A .

D_A is calculated as the slope created when the log of the diameters of a sequence of increasingly larger spheres is plotted on the x-axis against the log of the number of balls of each size required to cover the function projected onto the y-axis. The more irregular the surface, the more crevices are lost by the progressively larger spheres, the steeper the slope, the larger the D_A (72). A microcomputer program for the calculation is available upon request.

With few mathematical assumptions and remarkable statistical stability, the geometric dimension has been applied successfully to electron spin relaxation measurements on myoglobin and ferricytochrome C (252). It can also quantify precisely the elusive behavior of far-from-equilibrium kinematic scattering systems. It serves as the characteristic exponent of non-gaussian distribution functions that are without finite higher moments (11, 253); it describes the

shape of the tail of these distributions as an extremal measure that scales as the mean first-passage time (254); it gives a single numerical value to long-range correlations, thus serving as an index of the frequency content of the process (255); it serves as a numerical solution to undifferentiable functions (256); it transforms directly to a measure of the vertical dimension of Figure 8 called the sum of the Lyapounov exponents, quantifying the system's stability (239, 257–259). Since D_A represents the convergence in a relationship between a measure and its measurement, it has symmetry with respect to dilation, i.e. the index is independent of its absolute size. In this way, D_A is self-similar across temporal scales in processes like the internal symmetries of eddies within eddies within eddies in the dissipative dynamics of hydrodynamic turbulence (260, 261), the infinity within conservative Hamiltonian systems in the alternating patterns of invariant curves, and stochasticity seen in the homoclinic regions between attractor domains (14, 15, 52, 158, 262, 263). With the enzymes of the biogenic amine systems omnipresent in brain regions, it is perhaps not surprising that the effects of ligands such as amphetamine, lithium, chlorimipramine, and thyrotropin-releasing hormone (TRH) demonstrate similar alterations in D_A and D_A -like dynamics in TOH and TPOH systems, [3 H]-spiroperidol binding, interspike intervals of single units, electroencephalographic dynamics, animal behavior, and clinical response (58, 94, 263a–266). A similarity in the power-law dependence of multiple measures made on a single complex system is consistent with its status as an integrated organization (267), not an unreasonable claim with respect to psychotropic drug-influenced central nervous system function.

The way the D_A to RMS_A relationship as $\delta D_A / \delta \text{RMS}_A$ reflects the system's cooperativity as examined over an *ensemble* of experiments under the same conditions can be seen in the two contrasting views of how fluctuations in complex nonlinear systems evolve over time (Figure 9).

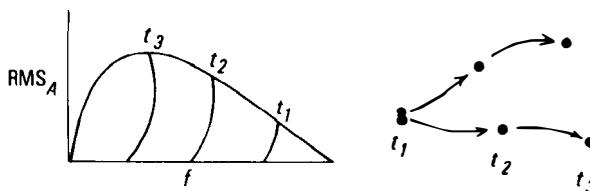


Figure 9

The Eulerian view (Figure 9, left) shows that fluctuations enter the small scales of motion as fast, frequent perturbations by heated solvent molecules and propagate across the 16 time scales of protein motion from 10^{-12} seconds (268) to minutes (136), the total error energy amplitude represented as the RMS_A (269). For globular proteins in solution this process is influenced by changes in solvent ΔG induced by charged and hydrophobic ligands. The Lagrangian view

(Figure 9, right) describes the extent of the maintenance of the neighborhood topology in the evolutionary process, a systems property called mixing reflected in the value of D_A (52, 161); we see a high mixing system in which two points that were together initially become widely separated over time. This effect is regulated by ions, drugs, and other influences on phase that promote or prevent the synchronization of molecular motions. The differential of the D_A to the RMS_A , a dispersion relation shown in Figure 10,

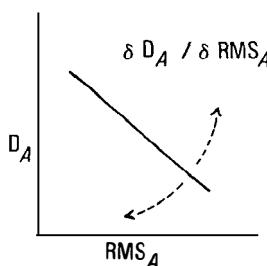


Figure 10

reflects the degree of coupling, the maintenance of the integrity of a neighborhood of values over time, in what can very generally be called a stochastic frequency-amplitude graph. A negative slope reflects a cooperative dynamic that is more subject to bifurcations and phase transitions, whereas a zero to positive slope indicates relative independence among the contributing elements or phases and the greater stability of "noisy periodicity" (94, 159a, 270). The differences between the slopes of the regressions of ensembles from experiments conducted under various psychopharmacological conditions can be tested for statistical significance (73, 230, 247).

Psychotropic drug-induced increases in $-\delta D_A / \delta RMS_A$, as seen at the molecular dynamic level in the TPOH system in the presence of tricyclic antidepressant drugs, are associated with hyperbolic, bifurcating saturation functions and the emergent periodicity and phase transitions characteristic of systems of anharmonic oscillators perturbed by increased coupling (271) in several neurobiological and clinical phenomena (73, 263a, 265, 266, 272). Decreases in $-\delta D_A / \delta RMS_A$ induced by physiological levels of lithium are associated with more sigmoid saturation functions and demonstrate the stability of systems composed of more independent elements (12, 73, 265, 266, 272). Depending upon dose, amphetamine induces both these contrasting conditions in a variety of neuropsychobiological contexts (58, 94, 263a, 273).

NON-EQUILIBRIUM BEHAVIOR AS MULTIPLE RECEPTOR LIGAND-BINDING PROCESSES

The influence of a ligand on the kinetics of its own binding behavior as an $[R-L]_i$, the allosteric principle (274), was invoked long ago to explain the

nonlinear behavior of oxygen binding to hemoglobin (275–277). Those classical non-Langmuir, non-Michaelis functions manifested fractional characteristic exponents of about 2.8 (278). Such behavior is easily analogized to more modern views of the nonlinear dynamics of ligand-induced conformational changes in macromolecular and membrane stability via ligand-induced changes in solvent entropy (26–28, 30, 31, 35–37, 279) called the hydrophobic effect (23–25). One recent demonstration of the role of solvent influences on macromolecular motion as reflected in receptor binding kinetics was a direct one exploiting systematic variations in solvent viscosity (41).

Ligand-binding techniques used in current pharmacological studies exploit extremely high concentrations of (cold) hydrophobic ligands, most of which generate multiple discontinuities in the saturation functions (280, 281), not unlike the bifurcational behavior seen in Figure 6 over $[R-L]$, and in Figure 5 over t and modeled by Equation 8 and Figure 7 (see also Figure 12). In this context, binding is viewed as adherence to a macromolecular-membrane moiety conformationally altered in a nonlinear manner in the direction of denaturation and precipitation by increasing concentrations of charged and hydrophobic ligands. These dynamics are consistent with a degree of structural-dynamical specificity of the ligand as well as the less specific nonlinear force characteristics of $[R-L]$, as seen in Figures 7, 8, and 12. Anomalous behavior in time observed in the early pharmacological ligand-binding studies (282), i.e. the demonstration that the low-affinity system saturated several minutes before the high-affinity one, suggests conformational interconversion as in Figures 1, 2, and 4 rather than the simultaneous presence of multiple receptor membrane proteins. An extensive new literature on specific coding in entropies (see above) makes structural specificity transformable into equal or even more specific solvent-mediated dynamical messages and offers an explanation for the ever growing receptor-system kinetic heterogeneities and inconsistencies in the experimental literature (282a, 282b). Bathing a system of relatively homogeneous nicotinic-cholinergic microsacs from *E. electricus* and *T. marmorata* in high concentrations of cholinergic ligand is the condition under which the depolarization mechanism is desensitized, the time dynamics bifurcate into fast and slow processes (283), and multiple kinetic binding functions can be observed (283–287). Examples of $[R-L]$ -induced bifurcations in kinetic functions are seen in Figure 11: on the left in $[^3H]$ -TRH binding to pituitary cell membrane (288); in the center in $[^3H]$ -etorphine binding to liposomes containing cerebrosides (289), a preparation not inconsistent with the orderly and complex kinetics of binding to other non-biological, surface-active materials (290, 291); and on the right in a nonlinear Scatchard plot the use of which is actually inappropriate for nonlinear systems (292), with two high-affinity unstable stationary states in $[^3H]$ -spiperone-haloperidol competition binding to an olfactory tubercle crude membrane preparation from the mouse (293).

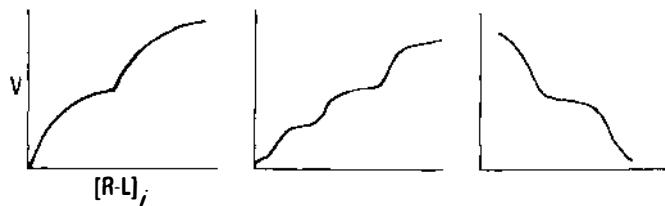


Figure 11

The similarity of these iterative binding functions to classical multiphasic protein denaturation curves over increasing concentrations of solvent-active, charged hydrophobic ligands such as urea or guanidine salts (45) and lithium bromide (294) is rather striking (Figure 12).

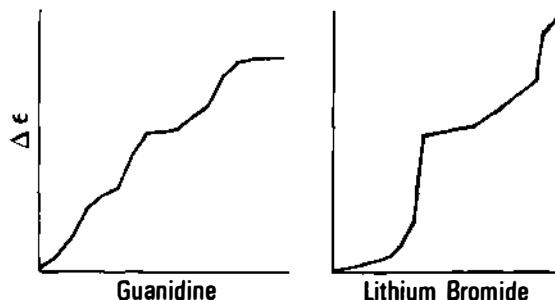


Figure 12

Multiple stable states across increasing concentrations of charged hydrophobic $[R-L]_i$ as in Figure 11 generate the expected instabilities in the time domain as in Figure 13: $[^3H]$ -cAMP binding to purified plasma membranes from *D. discoideum* (295) on the left; cumulative $[^3H]$ -spiroperidol binding to crude rat striatal membranes (296) in the center; and a similar preparation with more frequent sampling displayed as differences from mean velocity (264) on the right.



Figure 13

Most of these complex nonlinear behaviors, called surface phenomena in the context of $[^3H]$ -spiperone binding to crude striatal membranes (297), were

demonstrated several years ago in the context of studies of insulin-receptor interactions (297a, 298) and included the multiphasic, concave upward Eadie-Scatchard plot (299); the same $[R-L]_i$ -induced increases and decreases in binding as seen in Figure 3 and modeled in Equation 8 and Figure 7 (300, 301); and anomalous time-dependent dissociation behavior in the context of the affinities of ligand binding saturation functions (297a, 301, 302). A dynamic (Figure 14, right) in contrast to a structural (Figure 14, left) scheme portraying the interactions between $[R-L]_i$ and membrane receptors is seen as an exchange of solvent entropies (303) between ligand and receptor polypeptide chains (279), a system with, if anything, more degrees of freedom with respect to the specific encoding of information than that of a static, lock-and-key structure. A successful ligand-membrane receptor interaction may depend upon resonance in the ligand-induced, solvent-mediated receptor response function.

TWO RECEPTOR MECHANISMS

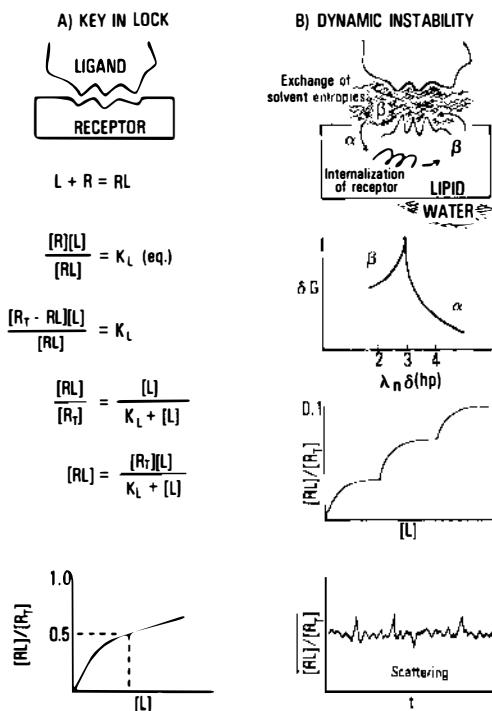


Figure 14

The receptor peptide is portrayed as a transitional β -strand-like form, unstable in water (29, 304–307) and a configuration seen often in binding domains of

proteins (308–311). It is perturbed by a $[R-L]_i$ -induced change in the neighboring solvent structural dynamics into a volume-reduced, more α -helical form as seen in lysine and leucine copolymer transitions (314), and hydrophobic negative solvent entropy drives it into the lipid bilayer, a process called receptor internalization (312). In this less hydrophobic, lower ΔG environment it can reform. Similar solvent-mediated peptide-peptide dynamics are observed in studies of protein folding (306). It should be noted that there is evidence that the internalization process in non-central nervous system tissue is associated with receptor-mediated endocytosis (313, 314). The membrane perturbation associated with these events could serve as a low-energy, instability-induced trigger for the subsequent transconductional events. Exquisitely solvent structure-sensitive rates of spontaneous depolarization (for example, after small changes in sodium concentration) characterize the behavior of artificial lipid bilayer models of neuronal membranes (315; M. Montal, personal communication, 1981).

Since water structure and dynamics in a closed system are temporally and spatially distributed properties (21, 22), global properties of pharmacological and peptide charged hydrophobic ligands can be rationalized as induced changes in solvent entropy over large regions of the brain and reflected in influences on macromolecular and membrane stability. This suggests that predictions about the relationship between structures and functions of families of $[R-L]_i$'s could be predicated on the basis of their influences on solvent entropies. Due to the precise quantification of this property in kcal for each amino acid, brain polypeptide structure and function can serve as a test of this $[R-L]_i$, solvent entropy hypothesis.

A SOLVENT ENTROPY SEQUENCE APPROACH TO BRAIN POLYPEPTIDE STRUCTURE AND FUNCTION

Recent systematic studies of codon substitution errors and secondary and tertiary structural equivalences in the evolution of polypeptide chains indicate that amino-acid exchanges are made on the basis of similarities in their affinities for water (309, 316, 317). Four families of five amino acids each have been characterized by conversion as energies via their equilibrium kinetics of transport from organic solvents to water as an index of hydrophobicity in kcal/mol: $0.00 \rightarrow 0.10$, $0.66 \rightarrow 0.87$, $1.57 \rightarrow 2.17$, and $2.67 \rightarrow 3.77$ (318–320). In β short spans, consecutive amino acids alternate between low and high values for hydrophobicity; a hydrophobic side chain is surrounded by two hydrophilic or apolar residues (321–323). α -Helical short spans have a two-fold greater wavelength in the hydrophobicity sequence of their residues in which on the average two hydrophobic side chains are followed by two that are hydrophilic or apolar (323–325). The increased adjacency of hydrophobic

groups in a longer wavelength, α -helix-like structure leads to more negative solvent entropy-forced self-aggregation between the residues (a critical mass may serve to recruit even more of the chain), a reduced volume of solvent occupancy, and less solvent structural distortion; a sequence varying more frequently between hydrophobic and hydrophilic or apolar residues as in a β -strand occupies a greater solvent volume and induces greater destabilizing ΔG in solvent entropy (307). For example, α -helices become conformationally stable in solution in 10^{-7} seconds (326), whereas the β -conformation requires minutes (327, 328).

On the basis of these findings and the above development involving solvent-mediated macromolecular stability, two members with well-established differences in potency were selected from each of six families of neurobiologically active peptides. The polypeptides were normalized to equivalent lengths; the sequence of deviations from mean hydrophobicity in kcal was determined for each peptide, treated as in Equation 1, and its D_A value calculated (303, 329). As $[R-L]_i$, the faster-frequency, more β -strand-like series, having a higher D_A than the more smoothly varying α -helix sequences, were predicted to generate higher solvent ΔG -mediated macromolecular and membrane instability, with a resulting increase in central nervous system potency (Figure 15).

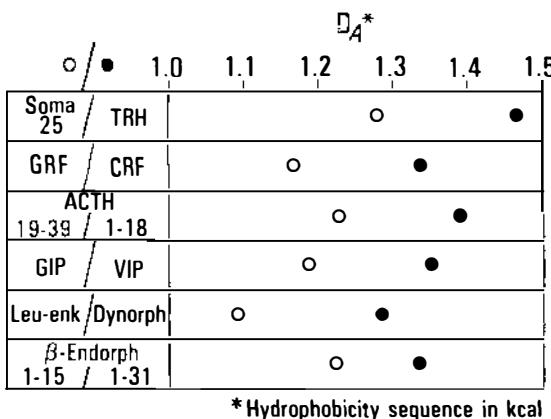


Figure 15

The chart demonstrates that a higher D_A (solid dot) is manifested by the more behaviorally activating of each pair of peptides, i.e. by thyrotropin-releasing hormone than by somatostatin-25, by corticotropin-releasing factor than by growth-hormone releasing factor, by the first segment of adrenocorticotropic hormone than by the second, by vasoactive intestinal peptide than by gastrointestinal peptide, by dynorphin than by leu-enkephalin, and by the entire β -endorphin than by the first half of its sequence (330-336; R. Guillemin,

personal communication, 1983; P. Brazeau, personal communication, 1983). The nonlinearity of influences of an [R-L]_n on the activity and stability properties of TOH and TPOH, seen in Figures 3 and 6 as modeled in Equation 8 and Figures 7 and 8, is also observed in the excitatory, inhibitory, and nil effects of the same peptide, depending on neural cell type, anatomical location, and associated neurotransmitter ligands (335, 336). The characteristic partial antagonisms among the participants in a multidetermined system rather than the monotonic ordering of values of the geometric dimension on the hydrophobicity sequence in relation to effect, as in Figure 15, may better predict the actions of related neural peptide pairs. For example, substance P ($D_A = 1.10$), dense in terminals A₁₀ mesencephalic dopamine cell bodies, induces an amphetamine-like hyperactivity syndrome when infused into the ventral tegmental region (337); neurotensin ($D_A = 1.34$), located similarly (338), blocks amphetamine-induced hyperactivity and stereotypy when given intracerebrally (339). Perhaps an aggregate of regionally involved brain peptides can be summed logarithmically like Lyapounov exponents of stability (237-239) in order to predict their multiplicatively summed influence on a system (303).

This approach also suggests the possibility that the one ligand molecule-one receptor protein moiety stoichiometry implicit in the use of molarity instead of weight as the meaningful unit in studies of dose-response functions of polypeptides may not be correct. For example, the difference in the exponents, D_A , to the base 2.5, the ratio of the masses per molecule of dynorphin versus leu-enkephalin as the log of the dose equivalence would predict the roughly three orders of magnitude ratio of their potencies (331). α - and β -endorphin, the latter about twice the mass of the former per mol, were about equally potent when compared on the basis of weight (R. Guillemin, personal communication, 1983).

The ubiquity of α - and β -sequence short spans in all peptides and proteins (323), the differences in the stability-altering character of the relationships of the two patterns with aqueous solvent, and the five- to ten-fold increase in degrees of freedom in specific amino-acid exchanges using a simple up-down code of variation in hydrophobicities suggest the possibility that the history of difficulty in constructing a scheme for the custom synthesis of peptides (340) may have been due to a requirement for too much specificity. A macro-code of α and β short span rather than amino-acid sequences is suggested. A recent model with this sort of relaxed structural requirement is explained in terms of an α -helical peptide's asymmetric potential for membrane binding (341). The simplest of all possibilities involves a binary code, a dot versus dash transition probability, each successive residue crossing the mean or not in a mod-2 sequence dynamic of hydrophobicity (303). A perfect β -strand would have a $p(\Delta)$ of 1.0, and an α -helical short span, a $p(\Delta)$ of 0.5. The amino-acid sequences of corticotropin-releasing factor and a polypeptide with very similar

actions and potency, urotensin-I (342), differ in 20 of 41 residues. In the binary code of hydrophobicity there are two adjacent transpositions, at 22 and 39, and only two differences, at 27 and 33 (303, 329).

A reflection of the competition for solvent entropy between a macromolecular system (TPOH) and a polypeptide (leu-enkephalin) examined under control conditions and in the presence of the neuropeptide is seen in Figure 16. An $[R-L]_i$ -induced change in the kinetic scattering pattern is seen in a more gaussian distribution of A values from multiple simultaneous determinations, although the median velocity remains the same:

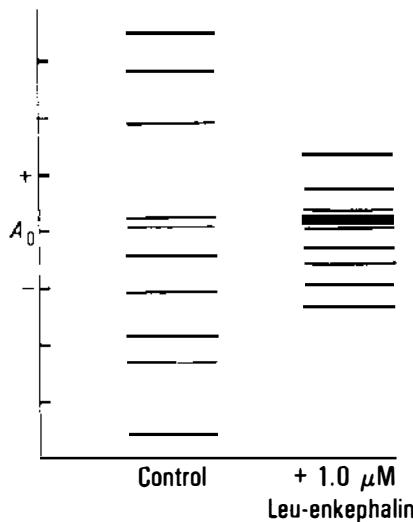


Figure 16

The statistical dynamics of non-equilibrium brain enzyme and receptor systems may offer a new experimental language for studies in molecular psychopharmacology.

ACKNOWLEDGEMENTS

The list of people to whom I feel indebted for stimulating discussions bearing on the issues discussed in this review might be virtually endless, but would certainly include Ralph Abraham, Ralph Adams, Daniel Atkinson, Erol Başar, Floyd Bloom, Paul Boyer, Paul Brazeau, Britton Chance, Jack Cowan, Cindy Ehlers, Marlene DeLuca, Manfred Eigen, Doyne Farmer, George Feher, Hans Frauenfelder, Alan Garfinkel, Albert Goldbeter, Roger Guillemin, Hermann Haken, Stuart Kauffman, Seymour Kaufman, Roy King, Suzanne Knapp, Daniel Koshland, Walter Lovenberg, Benoit Mandelbrot, William McElroy, Maurice Montal, Elliott Montroll, John Ross, David Ruelle, Patrick Russo,

Rob Shaw, Kurt Shuler, René Thom, Kenneth Watson, Norman Weiner, Bruce West, Kent Wilson, and Christopher Zeeman. I am also grateful to Patrick Russo for computer assistance and to Barbara Blomgren for computer, editorial, and production assistance. Our work is supported by grants from the John D. and Catherine T. MacArthur Foundation, the W. M. Keck Foundation, DA-00265-11 and MH16109-04 from the United States Public Health Service, and Contract DAAG20-83-K-0069 from the United States Army Research Office.

Literature Cited

1. Mandell, A. J. 1978. Redundant mechanisms regulating brain tyrosine and tryptophan hydroxylases. *Ann. Rev. Pharmacol. Toxicol.* 18:461-93
2. Joh, T. H., Park, D. H., Reis, D. J. 1978. Direct phosphorylation of brain tyrosine hydroxylase by cyclic AMP-dependent protein kinase: Mechanism of enzyme activation. *Proc. Natl. Acad. Sci. USA* 75:4744-48
3. Weiner, N. 1979. Tyrosine-3-monooxygenase. In *Aromatic Amino Acid Hydroxylases and Mental Disease*, ed. M. B. H. Youdim, pp. 141-90. New York: Wiley. 390 pp.
4. Vulliet, P. R., Langan, T. A., Weiner, N. 1980. Tyrosine hydroxylase: A substrate of cyclic AMP-dependent protein kinase. *Proc. Natl. Acad. Sci. USA* 77:92-96
5. Edelman, A. M., Raese, J. D., Lazar, M. A., Barchas, J. D. 1981. Tyrosine hydroxylase: Studies on the phosphorylation of a purified preparation of the brain enzyme by the cyclic AMP-dependent protein kinase. *J. Pharmacol. Exp. Ther.* 216:647-53
6. Fujisawa, H., Yamauchi, T., Nakata, H., Okuno, S. 1982. Regulation of tryptophan 5-monooxygenase and tyrosine 3-monooxygenase by protein kinases. In *Oxygenases and Oxygen Metabolism*, ed. M. Nazaki, S. Yamamoto, Y. Ishimura, M. J. Coon, L. Ernster, R. W. Estabrook, pp. 281-92. New York: Academic. 664 pp.
7. Kuhn, D. M., Lovenberg, W. 1982. Role of calmodulin in the activation of tryptophan hydroxylase. *Fed. Proc.* 41: 2258-64
8. Boadle-Biber, M. C. 1982. Further studies on the role of calcium in the depolarization-induced activation of tryptophan hydroxylase. *Fed. Proc.* 31:2495-503
- 8a. Haken, H. 1978. *Synergetics*. New York: Springer-Verlag. 355 pp.
9. Ma, S-K. 1976. *Modern Theory of Critical Phenomena*. New York: Benjamin Cummings. 561 pp.
10. Glansdorff, P., Prigogine, I. 1971. *Thermodynamic Theory of Structure, Stability and Fluctuations*. New York: Wiley. 306 pp.
11. Montroll, E. W., West, B. J. 1979. On an enriched collection of stochastic processes. In *Fluctuation Phenomena*, ed. E. W. Montroll, J. L. Lebowitz, pp. 63-175. New York: North-Holland. 350 pp.
12. Reichl, L. E. 1980. *A Modern Course in Statistical Physics*, pp. 307-46. Austin: Univ. Texas Press. 709 pp.
13. Van Kampen, N. G. 1981. *Stochastic Processes in Physics and Chemistry*, pp. 304-38. New York: North-Holland. 419 pp.
14. Moser, J. 1973. Stable and random motions in dynamical systems. *Ann. Math Studies* 77:21-60
15. Bowen, R., Ruelle, D. 1975. The ergodic theory of axiom A flows. *Invent. Math.* 29:181-202
16. Ruelle, D. 1977. *Statistical Mechanics and Dynamical Systems*, pp. 1-108. Durham, NC: Duke Univ. Press. 304 pp.
17. Collet, P., Eckmann, J-P. 1980. *Iterated Maps on the Interval as Dynamical Systems*, pp. 1-62. Boston: Birkhauser. 248 pp.
18. Ott, E. 1981. Strange attractors and chaotic motions of dynamical systems. *Rev. Mod. Phys.* 53:655-71
19. Eckmann, J-P. 1981. Roads to turbulence in dissipative dynamical systems. *Rev. Mod. Phys.* 53:643-54
20. Helleman, R. H. G. 1983. One mechanism for the onsets of large-scale chaos in conservative and dissipative systems. In *Long-Time Prediction in Dynamics*, ed. C. W. Horton, L. E. Reichl, V. G. Szebehely, pp. 95-126. New York: Wiley. 496 pp.
21. Eisenberg, D., Kauzmann, W. 1969. *The Structure and Properties of Water*, pp.

205-27. New York: Oxford Univ. Press. 296 pp.

22. Stillinger, F. H. 1980. Water revisited. *Science* 209:451-57

23. Tanford, C. 1973. *The Hydrophobic Effect*, pp. 24-80. New York: Wiley-Interscience. 233 pp.

24. Tanford, C. 1979. Interfacial free energy and the hydrophobic effect. *Proc. Natl. Acad. Sci. USA* 75:4175-76

25. Ben-Naim, A. 1980. *Hydrophobic Interactions*. New York: Plenum. 311 pp.

26. Cooke, R., Kuntz, I. D. 1974. The properties of water in biological systems. *Ann. Rev. Biophys. Bioeng.* 3:95-126

27. Englund, D. 1975. Nucleic acids, peptides and proteins. In *Water: A Comprehensive Treatise*, ed. F. Franks, 3:305-18. New York: Plenum. 472 pp.

28. Kauzmann, W. 1959. Some factors in the interpretation of protein denaturation. *Adv. Prot. Chem.* 14:1-68

29. Sturtevant, J. M. 1977. Heat capacity and entropy changes in processes involving proteins. *Proc. Natl. Acad. Sci. USA* 74:2236-40

30. Finney, J. L. 1977. The organization and function of water in protein crystals. *Phil. Trans. R. Soc. London Ser. B* 278:3-32

31. Finney, J. L. 1979. The organization and function of water in protein crystals. In *Water: A Comprehensive Treatise*, ed. F. Franks, 6:47-122. New York: Plenum. 455 pp.

32. Edsall, J. T. 1965. Apparent molal volume, heat capacity, compressibility and surface tension of dipolar ions in solution. In *Proteins, Amino Acids, and Peptides as Ions and DiPolar Ions*, ed. E. J. Cohen, J. T. Edsall, pp. 155-76. New York: Hafner. 686 pp.

33. Yang, J. T. 1961. The viscosity of macromolecules in relation to molecular conformation. *Adv. Prot. Chem.* 16:323-401

34. Careri, G., Fasella, P., Gratton, E. 1975. Statistical time events in enzymes: A physical assessment. *CRC Crit. Rev. Biochem.* 3:141-64

35. Woodward, C. K., Hilton, B. D. 1979. Hydrogen exchange kinetics and internal motions in proteins and nucleic acids. *Ann. Rev. Biophys. Bioeng.* 8:99-127

36. Gurd, F. R. N., Rothgeb, T. M. 1979. Motions in proteins. *Adv. Prot. Chem.* 33:74-165

37. Williams, R. J. P. 1979. The conformational properties of proteins in solution. *Biol. Rev.* 54:389-437

38. McCammon, J. A., Karplus, M. 1980. Simulation of protein dynamics. *Ann. Rev. Phys. Chem.* 31:29-45

39. Austin, R. H., Beeson, K. W., Eisenstein, L., Frauenfelder, H., Gunsalus, I. C. 1975. Dynamics of ligand binding to myoglobin. *Biochemistry* 14:5355-73

40. Alberding, N., Austin, R. H., Chau, S. S., Eisenstein, L., Frauenfelder, H., Gunsalus, I. C., Nordlund, T. M. 1976. Dynamics of carbon monoxide binding to protoheme. *J. Chem. Phys.* 65:4701-11

41. Beece, D., Eisenstein, L., Frauenfelder, H., Good, D., Marden, M. C., Reinisch, L., Reynolds, A. H., Sorensen, L. B., Yue, K. T. 1980. Solvent viscosity and protein dynamics. *Biochemistry* 19: 5147-57

42. Karplus, M., Weaver, D. L. 1976. Protein-folding dynamics. *Nature* 260:404-06

43. Baldwin, R. L. 1978. The pathway of protein folding. *Trends Biochem. Sci.* 3:66-68

44. Cooper, A. 1976. Thermodynamic fluctuations in protein molecules. *Proc. Natl. Acad. Sci. USA* 73:2740-41

45. Riddiford, L. M. 1966. Solvent perturbation and ultraviolet optical rotatory dispersion studies of paramyosin. *J. Biol. Chem.* 421:2792-802

46. Hammes, G. G., Swann, J. C. 1967. Influence of denaturing agents on solvent structure. *Biochemistry* 6:1591-96

47. Gavish, B., Werber, M. M. 1979. Viscosity-dependent structural fluctuations in enzyme catalysis. *Biochemistry* 18:1269-75

48. Atkinson, D. E. 1977. *Cellular Energy Metabolism and Its Regulation*, pp. 1-12. New York: Academic. 293 pp.

49. Oxtoby, J. C., Ulam, S. M. 1941. Measure preserving homeomorphisms and metrical transitivity. *Ann. Math.* 42:874-920

50. Kolmogorov, A. N. 1965. Three approaches to the quantitative definition of information. *Prob. Inf. Trans.* 1:1-36

51. Billingsley, P. 1965. *Ergodic Theory and Information*. New York: Wiley. 193 pp.

52. Arnold, V. I., Avez, A. 1968. *Ergodic Problems of Classical Mechanics*, pp. 81-114. New York: Benjamin. 286 pp.

53. Sinai, Y. 1972. Gibbsian measures in ergodic theory. *Russ. Math. Surv.* 27:21-46

54. Yorke, J. A., Yorke, E. D. 1979. Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model. *J. Stat. Phys.* 21:263-74

55. Ford, J. 1983. How random is a coin toss? *Physics Today* 36(4):40-47

56. Overton, D. A. 1974. Experimental

methods for the study of state-dependent learning. *Fed. Proc.* 33:1800-13

57. Mandell, A. J. 1980. Vertical integration of levels of brain function through parametric symmetries within self-similar stochastic fields. In *Information Processing in the Nervous System*, ed. H. M. Pinsker, W. D. Willis, pp. 177-97. New York: Raven. 366 pp.
58. Mandell, A. J., Stewart, K. D., Russo, P. V. 1981. The Sunday syndrome: From kinetics to altered consciousness. *Fed. Proc.* 40:2693-98
59. Kaufman, S. 1958. A new cofactor required for the enzymatic conversion of phenylalanine to tyrosine. *J. Biol. Chem.* 230:931-39
60. Bullard, W. P., Guthrie, P. B., Russo, P. V., Mandell, A. J. 1978. Regional and subcellular distribution and some factors in the regulation of reduced pterins in rat brain. *J. Pharmacol. Exp. Ther.* 206:4-20
61. Levine, R. A., Kuhn, D. M., Lovenberg, W. 1979. The regional distribution of hydroxylase cofactor in rat brain. *J. Neurochem.* 32:1575-78
62. Fukushima, T., Nixon, J. C. 1980. Analysis of reduced forms of biopterin in biological tissues and fluids. *Anal. Biochem.* 102:176-88
63. Nagatsu, T., Yamaguchi, T., Kato, T., Sugimoto, T., Matsuura, S., Akino, M., Tsushima, S., Nakazawa, N., Ogawa, H. 1981. Radioimmunoassay for biopterin in body fluids and tissues. *Anal. Biochem.* 110:182-89
64. Levine, R. A., Miller, L. P., Lovenberg, W. 1981. Tetrahydrobiopterin in striatum: Localization in dopamine terminals and role in catecholamine synthesis. *Science* 214:919-21
65. Lovenberg, W., Levine, R. A., Miller, L. P. 1981. Hydroxylase cofactor and catecholamine synthesis. In *Function and Regulation of Monoamine Enzymes: Basic and Clinical Aspects*, ed. E. Usdin, N. Weiner, M. B. H. Youdim, pp. 225-30. London: Macmillan. 961 pp.
66. Wurtman, R. J., Scally, M. C. 1977. Precursor control of neurotransmitter synthesis. In *Structure and Function of Monoamine Enzymes*, ed. E. Usdin, N. Weiner, M. B. H. Youdim, pp. 231-62. New York: Dekker. 996 pp.
- 66a. Mandell, A. J., Russo, P. V. 1981. Short-term regulation of hydroxylase cofactor in rat brain. *J. Neurochem.* 37:1573-78
67. Tong, J. H., Kaufman, S. 1975. Tryptophan hydroxylase. Purification and some properties of the enzyme from rabbit hindbrain. *J. Biol. Chem.* 250:4152-58
68. Kaufman, S., Fisher, D. B. 1974. Pterin-requiring aromatic amino acid hydroxylases. In *Molecular Mechanisms of Oxygen Activation*, ed. O. Hayaishi, pp. 285-369. New York: Academic. 678 pp.
69. Oka, K., Ashiba, G., Sugimoto, T., Matsuura, S., Nagatsu, T. 1982. Kinetic properties of tyrosine hydroxylase purified from bovine adrenal medulla and bovine caudate nucleus. *Biochim. Biophys. Acta* 706:188-96
70. Okuno, S., Fujisawa, H. 1982. Purification and some properties of tyrosine-3-monooxygenase from rat adrenal. *Eur. J. Biochem.* 122:49-55
71. Nakata, H., Fujisawa, H. 1982. Purification and properties of tryptophan-5-monooxygenase from rat brain stem. *Eur. J. Biochem.* 122:41-47
72. Mandell, A. J., Russo, P. V. 1981. Striatal tyrosine hydroxylase activity: Multiple conformational kinetic oscillators and product concentration frequencies. *J. Neurosci.* 1:380-89
73. Knapp, S., Mandell, A. J. 1983. Lithium and chlorimipramine differentially alter the stability properties of tryptophan hydroxylase as seen in allosteric and scattering kinetics. *Psychiat. Res.* 8:204-25
74. Kuczynski, R. 1979. Effects of para-chlorophenylalanine on amphetamine and haloperidol-induced changes in striatal dopamine turnover. *Brain Res.* 164:217-25
75. Kuczynski, R. 1980. Amphetamine-haloperidol interactions on striatal and mesolimbic tyrosine hydroxylase and dopamine metabolism. *J. Pharmacol. Exp. Ther.* 215:135-42
76. Ikeda, M., Fahien, L. A., Udenfriend, S. 1966. A kinetic study of bovine adrenal tyrosine hydroxylase. *J. Biol. Chem.* 241:4452-56
77. Joh, T. H., Kapit, R., Goldstein, M. 1969. A kinetic study of particulate bovine adrenal tyrosine hydroxylase. *Biochim. Biophys. Acta* 171:378-80
78. Kuczynski, R., Mandell, A. J. 1972. Regulatory properties of soluble and particulate rat brain tyrosine hydroxylase. *J. Biol. Chem.* 247:3114-22
79. Musacchio, J. M., McQueen, C. A., Craviso, G. L. 1973. Tyrosine hydroxylase: Subcellular distribution and molecular and kinetic characteristics of the different enzyme forms. In *New Concepts in Neurotransmitter Regulation*, ed. A. J. Mandell, pp. 69-88. New York: Plenum. 316 pp.
80. Weiner, N., Lee, F-L., Barnes, E.,

Dreyer, E. 1977. Enzymology of tyrosine hydroxylase and the role of cyclic nucleotides in its regulation. See Ref. 66, pp. 109-48

81. Bullard, W. P., Capson, T. L. 1982. Steady-state kinetics of tyrosine hydroxylase. (Privately circulated manuscript)

82. Davis, J. N. 1976. Brain tyrosine hydroxylation: Alteration of oxygen affinity *in vivo* by immobilization of electroshock in the rat. *J. Neurochem.* 27:211-15

82a. Kuhn, D. M., Ruskin, B., Lovenberg, W. 1978. Tryptophan hydroxylase: The role of oxygen, iron, and sulphydryl groups as determinants of stability and catalytic activity. *J. Biol. Chem.* 255:4137-43

83. Vaccari, A., Brotman, S., Cimino, J., Timiras, P. S. 1978. Adaptive changes induced by high altitude in the development of brain monoamine enzymes. *Neurochem. Res.* 3:295-311

84. Gonzales, C., Kwok, Y., Gibb, J., Fidone, S. 1979. Effects of hypoxia on tyrosine hydroxylase activity in rat carotid artery. *J. Neurochem.* 33:713-19

85. Kuhn, D. M., Ruskin, B., Lovenberg, W. 1979. Studies on the oxygen sensitivity of tryptophan hydroxylase. *Adv. Exp. Med. Biol.* 133:253-63

86. Katz, I. R. 1980. Oxygen affinity of tyrosine and tryptophan hydroxylases in synaptosomes. *J. Neurochem.* 35:760-63

87. Katz, I. R. 1981. Interaction between the oxygen and tryptophan dependence of synaptosomal tryptophan hydroxylase. *J. Neurochem.* 37:447-51

88. Ayling, J. E., Bailey, S. W. 1982. Mechanism of tetrahydrobiopterin-dependent monooxygenases. See Ref. 6, pp. 267-77

89. Benkovic, S. J. 1980. On the mechanism of action of folate and biopterin requiring enzymes. *Ann. Rev. Biochem.* 49:227-51

90. Shiman, R., Akino, M., Kaufman, S. 1971. Solubilization and partial purification of tyrosine hydroxylase from bovine adrenal medulla. *J. Biol. Chem.* 246:1330-40

91. Yamaguchi, T., Sawada, M., Kato, T., Nagatsu, T. 1981. Demonstration of tryptophan-5-monooxygenase activity in human brain by highly sensitive high-performance liquid chromatography with fluorometric detection. *Biochem. Internat.* 2:295-303

92. Badawy, A. A., Williams, D. L. 1982. Enhancement of rat brain catecholamine synthesis by administration of small doses of tyrosine and evidence for substrate inhibition of tyrosine hydroxylase activity by large doses of the amino acid. *Biochem. J.* 206:165-68

93. Snady, H., Musacchio, J. M. 1978. Quinonoid dihydropterin reductase-II; Regional and subcellular distribution of rat brain enzyme. *Biochem. Pharmacol.* 27:1947-53

94. Mandell, A. J., Russo, P. V., Knapp, S. 1982. Strange stability in hierarchically coupled neuropsychobiological systems. In *Evolution of Chaos and Order in Physics, Chemistry, and Biology*, ed. H. Haken, pp. 270-86. New York: Springer-Verlag. 287 pp.

95. Mann, S. P., Gordon, J. 1979. Inhibition of guinea-pig brain tyrosine hydroxylase by catechols and biopterin. *J. Neurochem.* 33:133-38

96. Kato, T., Yamaguchi, T., Nagatsu, T., Sugimoto, T., Matsuura, S. 1980. Effects of structures of tetrahydropterin cofactors on rat brain tryptophan hydroxylase. *Biochim. Biophys. Acta* 611: 241-50

97. Oka, K., Kato, T., Sugimoto, T., Matsuura, S., Nagatsu, T. 1981. Kinetic properties of tyrosine hydroxylase with natural tetrahydrobiopterin as cofactor. *Biochim. Biophys. Acta* 661:45-53

98. Kuhn, D. M. 1983. Deactivation of tyrosine hydroxylase by reduced pterins. *Trans. Am. Soc. Neurochem.* 14:175 (Abstr. 181)

99. Kuhn, D. M. 1984. Further studies on the activation of tryptophan hydroxylase by phosphorylating conditions. *J. Neurochem.* In press

100. Teipel, J., Koshland, D. E. 1969. The significance of intermediary plateau regions in enzyme saturation curves. *Biochemistry* 8:4656-63

101. Levitzki, A., Koshland, D. E. 1969. Negative cooperativity in regulatory enzymes. *Proc. Natl. Acad. Sci. USA* 62:1121-28

102. Walker, E. J., Ralston, G. B., Darvey, I. G. 1975. An allosteric model for ribonuclease. *Biochem. J.* 147:425-33

103. Goldbeter, A., Caplan, S. R. 1976. Oscillatory enzymes. *Ann. Rev. Biophys. Bioeng.* 5:449-75

104. Hess, B., Goldbeter, A., Lefever, R. 1978. Temporal, spatial, and functional order in regulated biochemical and cellular systems. *Adv. Chem. Phys.* 38:363-413

105. Olsen, L. F., Degn, H. 1978. Oscillatory kinetics of the peroxidase-oxidase reaction in an open system. *Biochim. Biophys. Acta* 523:321-34

106. Degn, H., Olsen, L. F., Perram, J. W. 1979. Bistability, oscillation, and chaos in an enzyme reaction. *Ann. NY Acad. Sci.* 316:623-37
107. Boiteux, A., Hess, B., Sel'kov, E. E. 1980. Creative functions of instability and oscillations in metabolic systems. *Curr. Top. Cell Reg.* 17:171-203
108. Decroly, O., Goldbeter, A. 1982. Bhythmicity, chaos, and other patterns of temporal self-organization in a multiply regulated biochemical system. *Proc. Natl. Acad. Sci. USA* 79:6917-21
109. Knapp, S., Mandell, A. J. 1979. Conformational influences on brain tryptophan hydroxylase by submicromolar calcium: Opposite effects of equimolar lithium. *J. Neural Transm.* 41S:1-15
110. Deleted in proof
111. Knapp, S., Mandell, A. J., Russo, P. V., Vitto, A., Stewart, K. D. 1981. Strain differences in kinetic and thermal stability of two mouse brain tryptophan hydroxylases. *Brain Res.* 230:317-36
112. Mandell, A. J., Knapp, S. 1982. Regulation of tryptophan hydroxylase: Variational kinetics suggest a neuropharmacology of phase. *Adv. Biochem. Psychopharmacol.* 34:1-15
113. Mandell, A. J., Russo, P. V. 1981. Striatal tyrosine hydroxylase: the role of cofactor concentration in the scaling of enzyme periodicity and behavioral stereotypy. See Ref. 65, pp. 271-80
114. Bullard, W. P., Yellin, J. B., Mandell, A. J. 1979. The pharmacology of striatal pterins and the regulation of dopaminergic function. In *Chemistry and Biology of Pteridines*, ed. R. L. Kisliuk, G. M. Brown, pp. 87-92. Amsterdam: Elsevier/North-Holland. 713 pp.
115. Mandell, A. J., Bullard, W. P., Russo, P. V., Yellin, J. B. 1980. The influence of *D*-amphetamine on rat brain striatal reduced bipterin concentration. *J. Pharmacol. Exp. Ther.* 213:569-74
116. Lovenberg, W., Alphs, L., Pradham, S., Bruckwick, E., Levine, R. 1980. Long-term haloperidol treatment and factors affecting the activity of striatal tyrosine hydroxylase. *Adv. Biochem. Psychopharmacol.* 24:9-15
117. Kuczenski, R. 1977. Biphasic effects of amphetamine on striatal dopamine dynamics. *Eur. J. Pharmacol.* 46:249-57
118. Hotchkiss, A. J., Morgan, M. E., Gibb, J. W. 1979. The long-term effects of multiple doses of amphetamine on neostriatal tryptophan hydroxylase, tyrosine hydroxylase, choline acetyltransferase, and glutamate decarboxylase activities. *Life Sci.* 25:1373-78
119. Hotchkiss, A. J., Gibb, J. W. 1980. Long-term effects of multiple doses of methamphetamine on tryptophan hydroxylase and tyrosine hydroxylase activity in rat brain. *J. Pharmacol. Exp. Ther.* 214:257-62
120. Trulson, M. E., Jacobs, B. L. 1980. Chronic amphetamine administration decreases brain tryptophan hydroxylase activity in cats. *Life Sci.* 26:329-35
121. Bakhit, C., Kwok, Y. C., Gibb, J. W. 1980. Effects of methamphetamine on kinetic characteristics of neostriatal tyrosine hydroxylase. *Life Sci.* 26:1815-19
122. Bakhit, C., Morgan, M. E., Gibb, J. W. 1981. Propranolol differentially blocks the methamphetamine-induced depression of tryptophan hydroxylase in various rat brain regions. *Neurosci. Lett.* 23:99-103
123. Bardsley, M. E., Bachelard, H. S. 1981. Catecholamine levels and tyrosine hydroxylase activities in rat brain regions after chronic treatment with and withdrawal of methamphetamine. *Biochem. Pharmacol.* 30:1543-49
124. Bakhit, C., Gibb, J. W. 1981. Methamphetamine-induced depression of tryptophan hydroxylase: Recovery following acute treatment. *Eur. J. Pharmacol.* 76:229-33
125. Trulson, M. E., Trulson, V. M. 1982. Effects of chronic methamphetamine administration on tryptophan hydroxylase activity, [³H]serotonin synaptosomal uptake, and serotonin metabolism in rat brain following systematic tryptophan loading. *Neuropharmacology* 21:521-27
126. Wightman, R. M., Strope, E., Plotsky, P., Adams, R. N. 1976. Monitoring of transmitter metabolites by voltammetry in cerebrospinal fluid following neural pathway stimulation. *Nature* 262:145-46
127. Huff, R., Adams, R. N., Rutledge, C. D. 1979. Amphetamine dose-dependent changes of *in vivo* electrochemical signals in rat caudate. *Brain Res.* 173:369-72
128. Marsden, C. A., Conti, J., Strope, E., Curzon, G., Adams, R. N. 1979. Monitoring 5-hydroxytryptamine release in the brain of the freely moving unanesthetized rat using *in vivo* voltammetry. *Brain Res.* 171:85-99
129. Cespuglio, R., Faradji, H., Ponchou, J. L., Buda, M., Riou, F., Gonon, F., Pujol, J. F., Jouvet, M. 1981. Differential pulse voltammetry in brain tissue. I. Detection of 5-hydroxyindoles in the rat striatum. *Brain Res.* 223:287-98
130. Gonon, F., Buda, M., Cespuglio, R., Pujol, J. F. 1981. Voltam-

metry in the striatum of chronic freely moving rats: Detection of catechols and ascorbic acid. *Brain Res.* 223:69-80

131. Plotsky, P. M., DeGreef, W. J., Neill, J. D. 1982. In situ voltammetric microelectrodes: Application to the measurement of median eminence catecholamine release during simulated suckling. *Brain Res.* 250:251-62

132. Costa, E., Gessa, G. L., Kuntzman, R., Brodie, B. B. 1962. The effects of drugs on storage and release of serotonin and catecholamines in brain; pharmacological analysis of central nervous action. In *First International Pharmacology Meeting*, ed. W. D. M. Paton, 8:43-71. New York: Macmillan. 330 pp.

133. Kopin, I. J., Gorden, E. K., Horst, W. D. 1965. Studies of uptake of L-norpinephrine-C¹⁴. *Biochem. Pharmacol.* 14:753-68

134. Glowinski, J., Axelrod, J. 1966. Effects of drugs on the disposition of H³-norepinephrine in the rat brain. *Pharmacol. Rev.* 18:775-85

135. Neff, N. H., Costa, E. 1966. The influence of monoamine oxidase inhibition on catecholamine synthesis. *Life Sci.* 5:951-66

136. Linderstrøm-Lang, K. V. 1958. Deuteron exchange and protein structure. In *Symposium on Protein Structure*, ed. A. Neuberger, pp. 34-51. London: Methuen. 351 pp.

137. Linderstrøm-Lang, K. V., Schellman, J. A. 1959. Protein structure and enzyme activity. In *The Enzymes*, ed. P. D. Boyer, H. Lardy, K. Myrbäck, 1:443-510. New York: Academic.

138. Hvilsted, A., Nielsen, S. O. 1966. Hydrogen exchange in proteins. *Adv. Prot. Chem.* 21:287-386

139. Englander, S. W. 1975. Measurement of structural and free energy changes in hemoglobin by hydrogen exchange methods. *Ann. NY Acad. Sci.* 244:10-27

140. McCammon, J. A., Karplus, M. 1979. Dynamics of activated processes in globular proteins. *Proc. Natl. Acad. Sci. USA* 76:3585-90

141. Chance, B., Hess, B., Betz, A. 1964. DPNH oscillations in a cell-free extract of *S. carlsbergensis*. *Biochem. Biophys. Res. Commun.* 16:182-87

142. Degn, H. 1968. Bistability caused by substrate inhibition of peroxidase in an open reaction system. *Nature* 217:1047-50

143. Lumsden, C. E., Pomerat, C. M. 1951. Normal oligodendrocytes in tissue culture. *Exp. Cell Res.* 2:103-14

144. Adey, W. R. 1981. Tissue interactions with nonionizing electromagnetic fields. *Physiol. Rev.* 61:435-74

145. Feller, W. 1968. *An Introduction to Probability Theory and Its Applications*, 1:303-41. New York: Wiley. 509 pp. 3rd ed.

146. Winfree, A. T. 1980. *The Geometry of Biological Time*, pp. 145-75. New York: Springer-Verlag. 530 pp.

147. Mandelbrot, B. B. 1977. *Fractals: Form, Chance, and Dimension*. San Francisco: W. H. Freeman. 365 pp.

148. McLennan, I. S., Lees, G. J. 1978. Diurnal changes in the kinetic properties of tryptophan hydroxylase from rat brain. *J. Neurochem.* 31:557-59

149. Sitaram, B. R., Lees, G. J. 1978. Diurnal rhythm and turnover of tryptophan hydroxylase in the pineal gland of the rat. *J. Neurochem.* 31:1021-26

150. Shibuya, H., Toru, M., Watanabe, S. 1978. A circadian rhythm of tryptophan hydroxylase in rat pineals. *Brain Res.* 138:364-68

151. Natali, J.-P., McRae-Degeurce, A., Chouvet, G., Pujol, J.-F. 1980. Genetic studies of daily variations of first-step enzymes of monoamine metabolism in the brain of inbred strains of mice and hybrids. I. *Brain Res.* 191:191-203

152. Natali, J.-P., McRae-Degeurce, A., Keane, P., Debilly, G., Pujol, J.-F. 1980. Genetic studies of daily variations of first-step enzymes of monoamine metabolism in the brain of inbred strains of mice and hybrids. II. *Brain Res.* 191:205-13

153. Cahill, A. L., Ehret, C. F. 1981. Circadian variations in the activity of tyrosine hydroxylase, tyrosine aminotransferase, and tryptophan hydroxylase: Relationship to catecholamine metabolism. *J. Neurochem.* 37:1109-15

154. Wehr, T. A., Goodwin, F. K., eds. 1983. *Circadian Rhythms and Psychiatry*. Los Angeles: Boxwood.

155. Careri, G., Fasella, P., Gratton, E. 1979. Enzyme dynamics: The statistical physics approach. *Ann. Rev. Biophys. Bioeng.* 8:69-97

156. Clauser, F. H. 1956. The behavior of non-linear systems. *J. Aeronaut. Sci.* 23:411-34

157. Swinney, H. L., Gollub, J. P. 1981. *Hydrodynamic Instabilities and the Transition to Turbulence*. New York: Springer-Verlag. 292 pp.

158. Peitgen, H.-O. 1982. Phase transitions in the homoclinic regime of area-preserving diffeomorphisms. See Ref. 94, pp. 197-214

159. Marsden, J. E. 1978. Qualitative

methods in bifurcation theory. *Bull. Am. Math. Soc.* 84:1125-48

159a. Mandell, A. J. 1983. From intermittency to transitivity in neuropsychobiological flows. *Am. J. Physiol.* 245 (Reg. Integr. Comp. Physiol. 14):R484-94

160. Grossmann, S., Thomae, S. 1977. Invariant distributions and stationary correlation functions of one-dimensional discrete processes. *Z. Naturforsch. Teil A* 32:1353-63

161. Ruelle, D. 1979. Sensitive dependence on initial condition and turbulent behavior of dynamical systems. *Ann. NY Acad. Sci.* 316:408-16

162. Mandell, A. J., Knapp, S., Kuczynski, R., Segal, D. S. 1972. Methamphetamine-induced alteration in the physical state of rat caudate tyrosine hydroxylase. *Biochem. Pharmacol.* 21:2737-50

163. Kuczynski, R., Mandell, A. J. 1972. Allosteric activation of hypothalamic tyrosine hydroxylase by ions and sulfated mucopolysaccharides. *J. Neurochem.* 19:131-37

164. Kuczynski, R. 1973. Soluble, membrane-bound, and detergent-solubilized rat striatal tyrosine hydroxylase. *J. Biol. Chem.* 248:5074-80

165. Kuczynski, R. 1974. Effect of sodium dodecyl sulfate on the kinetic properties and molecular weight of rat striatal tyrosine hydroxylase. *Life Sci.* 14:2379-84

166. Kuczynski, R. 1975. Conformational adaptability of tyrosine hydroxylase in the regulation of striatal dopamine biosynthesis. *Adv. Biochem. Psychopharmacol.* 13:109-26

167. Rubio, M. C. 1979. Physical state of tyrosine hydroxylase in the ganglia and nerve endings. *Gen. Pharmacol.* 10:297-302

168. Pickel, V. M., Beckley, S. C., Joh, T. H., Reis, D. J. 1981. Ultrastructural immunocytochemical localization of tyrosine hydroxylase in the neostriatum. *Brain Res.* 225:373-85

169. Kuczynski, R. 1983. Effects of phospholipases on the kinetic properties of rat striatal membrane-bound tyrosine hydroxylase. *J. Neurochem.* 40(3):821-29

170. Lloyd, T. 1979. The effects of phosphatidylinositol on tyrosine hydroxylase: Stimulation and inactivation. *J. Biol. Chem.* 254:7247-54

171. Hamon, M., Bourgoin, S., Hery, F., Simmonet, G. 1978. Phospholipid-induced activation of tryptophan hydroxylase from the rat brainstem. *Biochem. Pharmacol.* 27:915-22

172. Vigny, A., Henry, J-P. 1981. Bovine adrenal tyrosine hydroxylase: Comparative study of native and proteolyzed enzyme and their interaction with anions. *J. Neurochem.* 36:483-89

173. Lloyd, T., Walega, M. A. 1981. Purification of tyrosine hydroxylase by high-pressure liquid chromatography. *Anal. Biochem.* 116:559-63

174. Hamon, M., Bourgoin, S., Artaud, F., Mestikawy, S. E. 1981. The respective roles of tryptophan uptake and tryptophan hydroxylase in the regulation of serotonin synthesis in the central nervous system. *J. Physiol. (Paris)* 77:269-79

175. Stephens, J. K., Masserano, J. M., Vulriet, P. R., Weiner, N., Nakane, P. K. 1981. Immunocytochemical localization of tyrosine hydroxylase in rat adrenal medulla by the peroxidase labeled antibody method: Effects of enzyme activation on ultrastructural distribution of the enzyme. *Brain Res.* 209:339-54

176. Stone, A. L. 1980. Studies on a molecular basis for the heparin-induced regulation of enzymatic activity of mouse striatal tyrosine hydroxylase in vitro. Inhibition of heparin activation and of the enzyme of poly-L-lysyltyrosine and poly-L-lysylphenylalanine and their constituent peptides. *J. Neurochem.* 35:1137-50

177. Kuhn, D. M., Meyer, M. A., Lovenberg, W. 1979. Activation of rat brain tryptophan hydroxylase by polyelectrolytes. *Biochem. Pharmacol.* 28:3255-60

178. Kuhn, D. M., Meyer, M. A., Lovenberg, W. 1980. Comparisons of tryptophan hydroxylase from a malignant murine mast cell tumor and rat mesencephalic tegmentum. *Arch. Biochem. Biophys.* 199:355-61

179. Katz, I. R., Yamauchi, T., Kaufman, S. 1976. Activation of tyrosine hydroxylase by polyanions and salts. *Biochim. Biophys. Acta* 429:84-95

180. Lloyd, T., Ebersole, B. J., Schneider, F. H. 1978. Stimulation of tyrosine hydroxylase activity in cultured mouse neuroblastoma cells by monocarboxylic acids. *J. Neurochem.* 30:1641-43

181. Bustos, G., Roth, R. H., Morgenroth, V. H., Hancke, J. L. 1978. Tyrosine hydroxylase activation and transmitter release from central noradrenergic neurons by electrical field stimulation. *Arch. Pharmacol.* 301:149-56

181a. Kuczynski, R. 1981. Monovalent cations and striatal tyrosine hydroxylase. *J. Neurochem.* 37:681-86

181b. Bustos, G., Roth, R. H. 1979. Tyrosine hydroxylase regulation in rat striatal and olfactory tubercle slices. *Biochem. Pharmacol.* 28:1923-31

182. Chalfie, M., Settipani, L., Perlman, R. L. 1978. Activation of tyrosine 3-monooxygenase in pheochromocytoma cells by lasalocid. *Biochem. Pharmacol.* 27:673-77

183. Mann, S. P. 1978. An improved assay of tyrosine hydroxylase using sodium activation. *J. Neurochem.* 31:747-49

184. Helke, C. J., Yuhaniak, P. A., Keller, K. J., Gillis, R. A. 1978. Effect of deslanoside on brain and spinal cord levels of serotonin and 5-hydroxyindoleacetic acid and tryptophan hydroxylase activity. *Biochem. Pharmacol.* 27:2459-61

185. Hamon, M., Bourgoin, S., Artaud, F., Glowinski, J. 1979. The role of intraneuronal 5-HT and of tryptophan hydroxylase activation in the control of 5-HT synthesis in rat brain slices incubated in K^+ -enriched medium. *J. Neurochem.* 33:1031-42

186. Boadle-Biber, M. C. 1979. Decrease in the activity of tryptophan hydroxylase from slices of rat brain stem incubated in a low calcium or a calcium-free manganese-substituted medium. *Biochem. Pharmacol.* 28:3487-90

187. Psychoyos, S., Stanton, B. R., Atkins, C. D. 1979. The influence of glucose, other monosaccharides, and ascorbic acid on tyrosine hydroxylase activity of rat striatal synaptosomes. *Life Sci.* 25:1119-26

188. Bustos, G., Simon, J., Roth, R. H. 1980. Tyrosine hydroxylase regulation: Apparent kinetic alterations following incubation of brain slices in sodium-free medium. *J. Neurochem.* 35:47-57

189. Kapatos, G., Zigmond, M. J. 1982. Influence of calcium on dopamine synthesis and tyrosine hydroxylase activity in rat striatum. *J. Neurochem.* 39:327-35

190. Yanagisawa, M., Hasegawa, H., Ichiyama, A. 1982. Tryptophan hydroxylase from mouse mastocytoma P-815. Reversible activation by ethylenediamine-tetraacetate. *J. Biochem.* 92: 449-56

191. Iuvone, P. M., Marshburn, P. B. 1982. Regulation of tyrosine hydroxylase activity in retinal cell suspensions: Effects of potassium and 8-bromo cyclic AMP. *Life Sci.* 30:85-91

192. Lerner, P., Hartman, P., Ames, M. M., Lovenberg, W. 1977. The role of reductants in the tyrosine hydroxylase reactions. *Arch. Biochem. Biophys.* 182:164-70

193. Lerner, P., Nose, P., Ames, M. M., Lovenberg, W. 1978. Modification of the tyrosine hydroxylase assay. *Neurochem. Res.* 3:641-51

194. Hamon, M., Bourgoin, S., Hery, F., Simonnet, G. 1978. Characteristics of the activation by dithiothreitol and Fe^{++} of tryptophan hydroxylase from the rat brain. *Neurochem. Res.* 3:585-98

195. Hamon, M., Bourgoin, S., Artaud, F., Nelson, D. 1979. Regulatory properties of neuronal tryptophan hydroxylase. *Adv. Exp. Med. Biol.* 133:231-51

196. Kuhn, D. M., Ruskin, B., Lovenberg, W. 1980. Tryptophan hydroxylase. *J. Biol. Chem.* 255:4137-43

197. Okuno, S., Fujisawa, H. 1981. Inactivation of tyrosine-3-monooxygenase by acetone precipitation and its restoration by incubation with a sulphydryl agent and iron. *Biochim. Biophys. Acta* 658:327-33

198. Kaufman, S., Mason, K. 1982. Novel amino acid substrates and activators for rat liver phenylalanine hydroxylase. See Ref. 6, pp. 305-19

199. Galloway, M. P., Roth, B. L., Coscia, C. J. 1981. The effects of tetrahydroisoquinoline carboxylic acids on tyrosine-3-monooxygenase. *Arch. Biochem. Biophys.* 209:620-27

200. Agnati, L. F., Fuxe, K., Hokfelt, T., Goldstein, M., Jeffcoate, S. L. 1977. A method to measure the distribution pattern of specific nerve terminals in sampled regions. Studies on tyrosine hydroxylase, LHRH, TRH, and GIH immunofluorescence. *J. Histochem. Cytochem.* 25:1222-36

201. Hokfelt, T., Elde, R., Johansson, O., Ljungdahl, A., Schultzberg, M., Fuxe, K., Goldstein, M., Nilsson, G., Pernow, B., Terenius, L., Gauten, D., Jeffcoate, S. L., Rehfeld, J., Said, S. 1978. Distribution of peptide-containing neurons. In *Psychopharmacology: A Generation of Progress*, ed. M. A. Lipton, A. DiMascio, K. F. Killam, pp. 39-66. New York: Raven. 1731 pp.

202. Ajika, K. 1979. Simultaneous localization of LHRH and catecholamines in rat hypothalamus. *J. Anat.* 128:331-47

203. Teitelman, G., Joh, T. H., Reis, D. J. 1981. Linkage of the brain-skin-gut axis: Islet cells originate from dopaminergic precursors. *Peptides* 2:157-68

204. Chamay, Y., Leger, L., Dray, F., Berrod, A., Jouvet, M., Pujol, J.-F., Dubois, P. M. 1982. Evidence for the presence of enkephalin in catecholaminergic neurones of cat locus caeruleus. *Neurosci. Lett.* 30:147-51

205. Boadle-Biber, M. C. 1979. Increase in the activity of tryptophan hydroxylase from slices of rat brainstem incubated

with angiotensin-II. *Biochem. Pharmacol.* 28:3243-46

206. Hori, S., Ohtani, S. 1981. Kinetic properties of bovine pineal tryptophan-5-monooxygenase activated by an endogenous activating substance. *J. Neurochem.* 36:551-58

207. Ip, N. Y., Ho, C. K., Zigmond, R. E. 1982. Secretin and vasoactive intestinal peptide acutely increase tyrosine-3-monooxygenase in the rat superior cervical ganglion. *Proc. Natl. Acad. Sci. USA* 79:7566-69

208. Hori, S., Ohtani, S. 1978. Solubilization of tryptophan-5-monooxygenase from the pineal glands and existence of an activating substance in the tissue extract. *J. Neurochem.* 31:663-71

209. Spatz, H., Heller, B., Nachon, M., Fischer, E. 1975. Effects of D-phenylalanine on clinical picture and phenethylaminuria in depression. *Biol. Psychiat.* 10:235-39

210. Beckmann, H., Strauss, M. A., Ludolph, E. 1977. DL-phenylalanine in depressed patients: An open study. *J. Neural Transm.* 41:123-34

211. Schildkraut, J. J. 1978. Current status of the catecholamine hypothesis of affective disorder. See Ref. 201, pp. 1223-34

212. Vitto, A., Mandell, A. J. 1979. Calcium-dependent activation, stabilization, and destabilization of tryptophan hydroxylase from rat midbrain. *Neurosci. Abst.* 5:419

213. Vitto, A., Mandell, A. J. 1981. Stability properties of activated tryptophan hydroxylase from rat midbrain. *J. Neurochem.* 37:601-07

214. Vrana, K. E., Allihiser, C. L., Roskoski, R. 1981. Tyrosine hydroxylase activation and inactivation by protein phosphorylating conditions. *J. Neurochem.* 36:92-100

215. Lazar, M. A., Truscott, R. J. W., Raese, J. D., Barchas, J. D. 1981. Thermal denaturation of native striatal tyrosine hydroxylase: Increased thermolability of the phosphorylated form of the enzyme. *J. Neurochem.* 36:677-82

216. Kaufman, S. 1974. Properties of the pterin-dependent amino acid hydroxylases. In *Aromatic amino acids in the brain. CIBA Symp.* 22:85-107

217. Kaufman, S. 1975. Regulatory properties of tyrosine hydroxylase. In *Neurobiological Mechanisms of Adaptation and Behavior*, ed. A. J. Mandell, pp. 127-36. New York: Raven. 306 pp.

218. Knapp, S., Mandell, A. J. 1983. Scattering kinetics in a complex tryptophan hydroxylase preparation from rat brainstem raphé nuclei: Statistical evidence that the lithium-induced sigmoid velocity function reflects two states of available catalytic potential. *J. Neural Transm.* In press

219. Hasegawa, H., Yanagisawa, M., Ichiyama, A. 1982. Three discrete activity states of mastocytoma tryptophan-5-monooxygenase. See Ref. 6, pp. 293-304

220. Scheraga, H. A. 1980. Protein folding; application to ribonuclease. In *Protein Folding*, ed. J. Rainier, pp. 261-86. New York: Elsevier/North-Holland

221. Karplus, M. 1981. Aspects of protein dynamics. *Ann. NY Acad. Sci.* 367:407-15

222. Kety, S. S., Woodford, R. B., Harmel, M. H. 1948. Cerebral blood flow and metabolism in schizophrenia. *Am. J. Psychiat.* 104:765-70

223. Sokoloff, L. 1981. Relationships among local functional activity, energy metabolism, and blood flow in the central nervous system. *Fed. Proc.* 40:2311-16

224. Petrack, B., Sheppy, F., Fetzer, V. 1968. Studies on tyrosine hydroxylase from bovine adrenal medulla. *J. Biol. Chem.* 243:743-48

225. Musacchio, J. M., Wurzburger, R. J., D'Angelo, G. L. 1971. Different molecular forms of bovine adrenal tyrosine hydroxylase. *Mol. Pharmacol.* 7:136-46

226. Friedman, P. A., Kappelman, A. H., Kaufman, S. 1972. Partial purification and characterization of tryptophan hydroxylase from rabbit hindbrain. *J. Biol. Chem.* 247:4165-73

227. Knapp, S., Mandell, A. J., Geyer, M. A. 1974. Effects of amphetamines on regional tryptophan hydroxylase activity and synaptosomal conversion of tryptophan to 5-hydroxytryptamine in rat brain. *J. Pharmacol. Exp. Ther.* 189:676-89

228. Knapp, S., Mandell, A. J. 1975. Effects of lithium chloride on parameters of biosynthetic capacity for 5-hydroxytryptamine in rat brain. *J. Pharmacol. Exp. Ther.* 193:812-23

229. Knapp, S., Mandell, A. J. 1976. Coincidence of blockade of synaptosomal 5-hydroxytryptamine uptake and decrease in tryptophan hydroxylase activity: Effects of fenfluramine. *J. Pharmacol. Exp. Ther.* 198:123-35

230. Knapp, S. 1982. Tryptophan hydroxylase: Variational kinetics. *J. Histochem. Cytochem.* 30:847-50

231. Creighton, T. E. 1978. Experimental stud-

ies of protein folding and unfolding. *Prog. Biophys. Mol. Biol.* 33:231-97

232. May, R. M., Oster, G. F. 1976. Bifurcations and dynamic complexity in simple ecological models. *Am. Natur.* 110:573-99

233. Degn, H., Mayer, D. 1969. Theory of oscillations in peroxidase catalyzed oxidation reactions in open system. *Biochim. Biophys. Acta* 180:291-301

234. Selig, F. F. 1976. Chemical oscillations by substrate inhibition. *Z. Naturforsch. Teil A* 31:731-38

235. Olsen, L. F., Degn, H. 1977. Chaos in an enzyme reaction. *Nature* 267:177-78

236. Kernevez, J.-P. 1980. *Enzyme Mathematics*, pp. 57-110, 241-57. New York: North-Holland. 262 pp.

237. Shaw, R. 1981. Strange attractors, chaotic behavior, and information flow. *Z. Naturforsch. Teil A* 36:80-112

238. Geisel, T., Nierwetberg, J., Keller, J. 1981. Critical behavior of the Lyapounov number at the period-doubling onset of chaos. *Phys. Lett.* 86A:75-78

239. Farmer, D. 1982. Chaotic attractors of an infinite-dimensional dynamical system. *Physica* 4D:366-93

240. Kessler, K. A. 1978. Tricyclic antidepressants: mode of action and clinical use. See Ref. 201, pp. 1289-1302

241. Simpson, G. M., Lee, J. H. 1978. A ten-year review of antipsychotics. See Ref. 201, pp. 1131-38

242. Sneddon, I. N. 1972. *The Use of Integral Transforms*. New York: McGraw-Hill. 539 pp.

243. Stakgold, I. 1979. *Green's Functions and Boundary Value Problems*. New York: Wiley. 638 pp.

244. Jenkins, G. M., Watts, D. G. 1968. *Spectral Analysis and Its Applications*, pp. 16-56. San Francisco: Holden-Day. 525 pp.

245. Bendat, J. S. 1978. *Principles and Applications of Random Noise Theory*, pp. 29-77. New York: Krieger. 456 pp. Rev. ed.

246. Bracewell, R. N. 1978. *The Fourier Transform and Its Applications*, pp. 189-214. New York: McGraw-Hill. 444 pp.

247. Mandell, A. J. 1982. Three kinds of enzyme kinetics: Toward a neuropharmacology of phase. *J. Histochem. Cytochem.* 30:841-46

248. Mandelbrot, B. B. 1967. How long is the coast of Britain? Statistical self-similarity and fractional dimension. *Science* 155:636-38

249. Knapp, S., Mandell, A. J. 1981. Calcium, cofactor, and propranolol-induced changes in the kinetic variations of rat raphé tryptophan hydroxylase activity. See Ref. 65, pp. 215-24.

250. Manin, Y. I. 1981. *Mathematics and Physics*, pp. 35-51. Boston: Birkhäuser. 99 pp.

251. Alexandroff, P. 1961. *Elementary Concepts of Topology*. New York: Dover. 73 pp.

252. Stapleton, H. J., Allen, J. P., Flynn, C. P., Stinson, D. G., Kurtz, S. R. 1980. Fractal form of proteins. *Phys. Rev. Lett.* 45:1456-59

253. Gnedenko, B. V., Kolmogorov, A. N. 1968. *Limit Distributions for Sums of Independent Random Variables*, pp. 162-230. Reading, MA: Addison-Wesley. 293 pp.

254. Seshadri, V., West, B. J. 1982. Fractal dimensionality of Levy processes. *Proc. Natl. Acad. Sci. USA* 79:4501-05

255. Forrest, S. R., Witten, T. A. 1979. Long-range correlations in smoke-particle aggregates. *J. Phys. Math. Gen.* 12:L109-17

256. Berry, M. Y., Lewis, Z. Y. 1980. On the Weierstrass-Mandelbrot fractal function. *Proc. R. Soc. London Ser. A* 370:459-84

257. Kaplan, J., Yorke, J. 1978. The dimension of the strange attractor for a class of difference systems. *Lect. Notes Math.* 730:228-341

258. Mori, H. 1980. Fractal dimensions of chaotic flows of autonomous dissipative systems. *Prog. Theor. Phys.* 63:1044-47

259. Ledrappier, F. 1981. Some relations between dimension and Lyapounov exponents. *Commun. Math. Phys.* 81:229-38

260. Mandelbrot, B. B. 1974. Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier. *J. Fluid Mech.* 62:331-58

261. Mandelbrot, B. B. 1977. Fractals and turbulence: Attractors and dispersion. *Lect. Notes Math.* 615:83-93

262. Takens, F. 1972. Homoclinic points in conservative systems. *Invent. Math.* 18:267-92

263. Newhouse, S. 1977. Quasi-elliptic periodic points in conservative dynamical systems. *Am. J. Math.* 99:1061-87

263a. Mandell, A. J. 1981. Statistical stability in random brain systems: Possible implications for polydrug abuse in the borderline syndrome. *Adv. Subst. Abuse* 2:299-341

264. Mandell, A. J. 1982. The influence of a centrally active peptide on receptor macromolecular dynamics: Toward a neuropharmacology of phase. *Ann. NY Acad. Sci.* 398:191-206

265. Knapp, S., Ehlers, C., Russo, P. V., Mandell, A. J. 1981. A cross-

disciplinary approach to the action of lithium: A vertical integration. In *Basic Mechanisms in the Action of Lithium*, ed. H. M. Emrich, J. B. Aldenhoff, H. D. Lux, pp. 102-20. Princeton: Excerpta Medica. 265 pp.

266. Mandell, A. J., Knapp, S., Ehlers, C. L., Russo, P. V. 1983. The stability of constrained randomness: Lithium prophylaxis at several neurobiological levels. In *The Neurobiology of the Mood Disorders*, ed. R. M. Post, J. C. Ballenger. Baltimore: Williams & Wilkins. 967 pp.

267. Apple, M. S., Korostyshevskiy, M. A. 1980. Why many biological parameters are connected by power dependence. *J. Theor. Biol.* 85:569-73

268. Karplus, M., McCammon, J. A. 1979. Protein structural fluctuations during a period of 100 ps. *Nature* 277:578

269. Lorenz, E. N. 1969. The predictability of a flow which possesses many scales of motion. *Tellus* 21:289-307

270. Lorenz, E. N. 1980. Noisy periodicity and reverse bifurcation. *Ann. NY Acad. Sci.* 357:282-91

271. Gollub, J. P. 1980. The onset of turbulence: Convection, surface waves, and oscillators. *Lect. Notes Math.* 132:162-80

272. Ehlers, C. L., Russo, P. V., Mandell, A. J., Bloom, F. E. 1983. Architecture of rat nocturnal locomotion: A predictive descriptor of the effects of antidepressant and antimanic treatments. *Psychopharmacol. Bull.* 19:692-95

273. Wender, P. 1971. *Minimal Brain Dysfunction in Children*, pp. 87-134. New York: Wiley-Interscience. 242 pp.

274. Monod, J., Changeux, J.-P., Jacob, F. 1963. Allosteric proteins and cellular control systems. *J. Mol. Biol.* 6:306-29

275. Wyman, J. 1948. Heme proteins. *Adv. Prot. Chem.* 4:407-531

276. Wyman, J., Allen, D. W. 1951. The problem of heme interactions in hemoglobin and the basis of the Bohr effect. *J. Polymer Sci.* 7:499-518

277. Wyman, J. 1963. Allosteric effects in hemoglobin. *Cold Spring Harbor Symp. Quant. Biol.* 28:483-89

278. Levitzki, A. 1978. *Quantitative Aspects of Allosteric Mechanisms*, pp. 11-27. New York: Springer-Verlag. *Molec. Biol. Biochem. Biophys.* 28:11-27

279. Williams, R. J. P. 1977. Flexible drug molecules and dynamic receptors. *Angew. Chem. Int. Ed. Engl.* 16:766-77

280. Lord, J. A. H., Waterfield, A. A., Hughes, J., Kosterlitz, H. W. 1977. Endogenous opioid peptides: Multiple agonists and receptors. *Nature* 267:495-99

281. Snyder, S. H., Goodman, R. R. 1980. Multiple neurotransmitter receptors. *J. Neurochem.* 35:5-15

282. Burt, D. R., Snyder, S. H. 1975. Thyrotropin releasing hormone (TRH): apparent receptor binding in rat brain membranes. *Brain Res.* 93:309-28

282a. Taylor, J. E., Richelson, E. 1980. High affinity binding of tricyclic antidepressants to histamine H₁-receptors: Fact and artifact. *Eur. J. Pharmacol.* 67:41-46

282b. Barth, S. 1980. Mass-action model for radioimmunoassays and other saturation assays with atypical performance characteristics. *Math. Biosci.* 51:187-97

283. Colquhoun, D. 1978. The link between drug binding and response: Theories and observations. In *The Receptors*, ed. R. D. O'Brien, 1:93-142. New York: Plenum. 361 pp.

284. Grunhagen, H. H., Changeux, J.-P. 1976. Studies on the electrogenic action of acetylcholine with *Torpedo marmorata* electric organ. *V. J. Mol. Biol.* 106:517-35

285. Sakmann, B., Patlak, J., Neher, E. 1980. Single acetylcholine-activated channels show burst kinetics in presence of desensitizing concentrations of agonists. *Nature* 286:71-73

286. Mandell, A. J. 1982. Stochastic markers for an entropic defect. In *Biological Markers in Psychiatry and Neurology*, ed. E. Usdin, I. Hanin, 525-38. New York: Pergamon. 544 pp.

287. Mandell, A. J. 1982. Nonlinear dynamics in brain processes. *Psychopharmacol. Bull.* 18:59-63

288. Grant, G., Vale, W., Guillemin, R. 1973. Characteristics of the pituitary binding sites for thyrotropin-releasing factor. *Endocrinology* 92:1629-33

289. Loh, H. H., Cho, T. M., Wu, Y. C., Harris, R. A., Way, E. L. 1976. Opiate binding to cerebroside sulfate: a model system for opiate-receptor interaction. *Life Sci.* 16:1811-18

290. Cuatrecasas, P., Hollenberg, M. D. 1975. Binding of insulin and other hormones by non-receptor materials: saturation, specificity, and apparent "negative cooperativity." *Biochem. Biophys. Res. Commun.* 62:31-42

291. Hollenberg, M. D., Cuatrecasas, P. 1978. Distinction of receptor from non-receptor interactions in binding studies. See Ref. 283, pp. 193-214

292. Scatchard, G. 1949. The attractions of proteins for small molecules and ions. *Ann. NY Acad. Sci.* 51:573-672

293. Boehme, R. E., Ciaranello, R. D. 1982. Genetic control of dopamine and seroto-

nin receptors in brain regions of inbred mice. *Brain Res.* 266:51-65

294. Bigelow, C. C. 1960. Difference spectra of ribonuclease and two ribonuclease derivatives. *C. R. Trav. Lab. Carlsberg* 31:305-24

295. King, A. C., Frazier, W. A. 1979. Properties of the oscillatory cAMP binding component of *Dictyostelium discoideum* cells and isolated plasma membrane. *J. Biol. Chem.* 254:7168-76

296. Andorn, A. C., Maguire, M. E. 1980. [³H]Spiroperidol binding in rat striatum: Two high-affinity sites of differing selectivities. *J. Neurochem.* 35:1105-13

297. Leysen, J. E., Gommeren, W. 1981. Optimal conditions for [³H]apomorphine binding and anomalous equilibrium binding of [³H]apomorphine and [³H]spiperone to rat striatal membranes: Involvement of surface phenomena versus multiple binding sites. *J. Neurochem.* 36:201-19

297a. Chang, K. J., Jacobs, S., Cuatrecasas, P. 1975. Quantitative aspects of hormone-receptor interactions of high affinity. Effect of receptor concentration and measurement of dissociation constants of labeled and unlabeled hormones. *Biochim. Biophys. Acta* 406:294-99

298. Jacobs, S., Cuatrecasas, P. 1983. Insulin receptors. *Ann. Rev. Pharmacol. Toxicol.* 23:461-79

299. Cuatrecasas, P. 1974. Membrane receptors. *Ann. Rev. Biochem.* 43:169-214

300. DeMeyts, P. 1976. Cooperative properties of hormone receptors in cell membranes. *J. Supramol. Struct.* 4:241-56

301. Pottet, R. J., Standaert, M. L., Haase, B. A. 1977. Insulin binding to the human lymphocyte receptor. *J. Biol. Chem.* 252:5828-37

302. DeMeyts, P., Roth, J., Neville, D. M., Gavin, J. R., Lesniak, M. A. 1973. Insulin interactions with its receptors: Experimental evidence for negative cooperativity. *Biochem. Biophys. Res. Commun.* 55:154-66

303. Mandell, A. J. 1983. From chemical homology to topological temperature: A notion relating the structure and function of brain polypeptides. In *Synergetics of the Brain*, ed. E. Basar, H. Flohr, H. Haken, A. J. Mandell, pp. 365-76. Berlin: Springer-Verlag. 377 pp.

304. Snell, C. R., Fasman, G. D. 1973. Kinetics and thermodynamics of the α helix \longleftrightarrow β transconformation of poly(L-lysine) and L-leucine copolymers. A compensation phenomenon. *Biochemistry* 12:1017-25

305. Lim, V. I. 1978. Polypeptide chain folding through a highly helical intermediate as a general principle of globular protein structure formation. *FEBS Lett.* 89:10-14

306. Lesk, A. M., Chothia, C. 1980. Solvent accessibility, protein surfaces, and protein folding. *Biophys. J.* 10:35-47

307. Ptitsyn, O. B., Finkelstein, A. V. 1980. Similarities of protein topologies: Evolutionary divergence, functional convergence or principles of folding. *Quart. Rev. Biophys.* 13:339-86

308. Lim, V. I. 1974. Algorithms for prediction of α -helical and β -structural regions in globular proteins. *J. Mol. Biol.* 88:873-94

309. Lesk, A. M., Chothia, C. 1980. How different amino acid sequences determine similar protein structures: The structure and evolutionary dynamics of the globulins. *J. Mol. Biol.* 136:225-70

310. Schiffer, M. 1980. Possible distortion of antibody bonding site of the Mcg Bence-Jones protein by lattice forces. *Biophys. J.* 32:230-32

311. Smillie, L. B., Pato, M. D., Pearlstone, J. R., Mak, A. S. 1980. Periodicity of α -helical potential in tropomyosin sequence correlates with alternating actin binding sites. *J. Mol. Biol.* 136:199-202

312. Gorden, P., Carpentier, J.-L., Van Obberghen, E., Barazzzone, P., Roth, J., Orci, L. 1979. Insulin-induced receptor loss in the cultured human lymphocyte: Quantitative morphological perturbations in the cell and plasma membrane. *J. Cell Sci.* 39:77-88

313. Carpentier, J.-L., Gorden, P., Amheerdt, M., Van Obberghen, E., Kahn, C. R., Orci, L. 1978. ¹²⁵I-insulin binding to cultured human lymphocytes: Initial localization and fate of hormone determined by quantitative electron microscopic autoradiography. *J. Clin. Invest.* 61:1056-70

314. Hazum, E., Cuatrecasas, P., Marian, J., Conn, P. M. 1980. Receptor-mediated internalization of fluorescent gonadotropin-releasing hormone by pituitary gonadotropes. *Proc. Natl. Acad. Sci. USA* 77:6692-95

315. Nelson, N., Anbolt, R., Lindstrom, J., Montal, M. 1980. Reconstitution of purified acetylcholine receptors with functional ion channels in planar lipid bilayers. *Proc. Natl. Acad. Sci. USA* 77:257-61

316. Wuilmart, C., Urbain, J. 1976. Common origin and evolution of variable and constant regions of immunoglobulins. *J. Immunogenet.* 3:1-14

317. Wolfenden, R., Andersson, L., Cullis, P. M., Southgate, C. C. B. 1981. Affini-

ties of amino acid side chains for solvent water. *Biochemistry* 20:849-55

318. Nozaki, Y., Tanford, C. 1971. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. *J. Biol. Chem.* 246:2211-17

319. Manavalan, P., Ponnuswamy, P. K. 1978. Hydrophobic character of amino acid residues in globular proteins. *Nature* 275:673-74

320. Scheraga, H. A. 1979. Interactions in aqueous solution. *Acc. Chem. Res.* 12:7-13

321. Richardson, J. S. 1977. β -Sheets topology and the relatedness of proteins. *Nature* 268:495-500

322. Sternberg, M. J. E., Thornton, J. M. 1977. On the conformation of proteins: Hydrophobic ordering of strands in β -pleated sheets. *J. Mol. Biol.* 115:1-17

323. Wuilmart, C., Delhaise, P., Urbain, J. 1982. The sharing of amino acid short spans by ancestrally unrelated proteins may be the result of ubiquitous alpha and beta secondary structures. *J. Biosyst.* 15:221-32

324. Schiffer, M., Edmunson, A. B. 1967. Use of helical wheels to represent the structures of protein and to identify segments with helical potential. *Biophys. J.* 7:121-35

325. Delhaise, P., Wuilmart, C., Urbain, J. 1980. Relationships between α and β secondary structures and amino-acid pseudosymmetrical arrangements. *Eur. J. Biochem.* 105:553-64

326. Cummings, A. L., Eyring, E. M. 1975. Helix-coil transition kinetics in aqueous poly(α , ω -glutamic acid). *Biopolymers* 14:2107-14

327. Auer, H. E., Patton, E. 1976. Kinetics of the disordered chain-to- β transformation of poly(L-tyrosine) in aqueous solution. *Biophys. Chem.* 4:15-21

328. Arfmann, H. A., Labitzke, R., Wagner, K. F. 1977. Conformational properties of L-leucine, L-isoleucine, and L-norleucine side chains in L-lysine copolymers. *Biopolymers* 16:1815-26

329. Mandell, A. J. 1984. The spectral gap hypothesis and measures on a solvent entropy sequence code for polypeptides influencing neurobiological stability. *Internat. Rev. Neurobiol.* 25: In press

330. Segal, D. S., Mandell, A. J. 1974. Differential behavioral effects of hypothalamic polypeptides. In *The Thyroid Axis, Drugs, and Behavior*, ed. A. J. Prange Jr., pp. 129-34. New York: Raven

331. Goldstein, A., Tachibana, S., Lowney, L. I., Hunkapiller, M., Hood, L. 1979. Dynorphine-(1-13), an extraordinarily potent opiate peptide. *Proc. Natl. Acad. Sci. USA* 76:6666-70

332. Ehlers, C., Henricksen, S. J., Bloom, F. E., Rivier, J., Vale, W. J. 1982. Electroencephalographic and epileptogenic effects of corticotropin releasing factor (CRF) in rats. *Neurosci. Abstr.* 8:1013

333. Lee, E. H. Y., Geyer, M. A., Mandell, A. J. 1983. Effects of corticotropin releasing factor and growth hormone releasing factor on patterns of locomotion and brain monoamines in rats. *Neurosci. Abstr.* 9:385

334. Gispen, W. H., Isaacson, R. L. 1981. ACTH-induced excessive grooming in the rat. *Pharmacol. Ther.* 12:209-46

335. Iversen, L. L. 1983. Nonopiod neuropeptides in mammalian CNS. *Ann. Rev. Pharmacol. Toxicol.* 23:1-27

336. Bloom, F. E. 1983. The endorphins: A growing family of pharmacologically pertinent peptides. *Ann. Rev. Pharmacol. Toxicol.* 23:151-70

337. Kelley, A. E., Stinus, L., Iversen, S. D. 1979. Behavioral activation induced in the rat by substance P infusion into ventral tegmental area: Implication of dopaminergic A₁₀ neurones. *Neurosci. Lett.* 11:335-39

338. Palacios, J. M., Kuhar, M. J. 1981. Neuropeptins receptors are located on dopamine-containing neurons in rat midbrain. *Nature* 294:587-89

339. Nemeroff, C. B. 1980. Neuropeptins: Perchance an endogenous neuroleptic? *Biol. Psychiat.* 15:283-302

340. Guillemin, R. 1978. Peptides in the brain: The new endocrinology of the neuron. *Science* 202:390-402

341. Kaiser, E. T., Kezdy, F. J. 1983. Secondary structures of proteins and peptides in amphiphilic environments. *Proc. Natl. Acad. Sci. USA* 80:1137-43

342. Lederis, K., Letter, A., McMaster, D., Moore, G., Schlesinger, D. 1982. Complete amino acid sequence of urotensin I, a hypotensive and corticotropin-releasing neuropeptide from *Catostomus*. *Science* 218:162-64